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Abstract—There is a rich body of work related to the
security aspects of cellular mobile phones, in particular \ith
respect to the GSM and UMTS systems. To the best of our
knowledge, however, there has been no investigation of the
security of satellite phones (abbr.satphones). Even though a
niche market compared to the G2 and G3 mobile systems, there
are several 100,000 satphone subscribers worldwide. Giveéhe
sensitive nature of some of their application domains (e.g.
natural disaster areas or military campaigns), security pays a
particularly important role for satphones.

In this paper, we analyze the encryption systems used in
the two existing (and competing) satphone standards, GMR-1
and GMR-2. The first main contribution is that we were able
to completely reverse engineer the encryption algorithms ra-
ployed. Both ciphers had not been publicly known previously
We describe the details of the recovery of the two algorithms
from freely available DSP-firmware updates for satphones,
which included the development of a custom disassembler
and tools to analyze the code, and extending prior work on
binary analysis to efficiently identify cryptographic code We
note that these steps had to be repeated for both systems,
because the available binaries were from two entirely diffeent
DSP processors. Perhaps somewhat surprisingly, we foundah
the GMR-1 cipher can be considered a proprietary variant of
the GSM A5/2 algorithm, whereas the GMR-2 cipher is an
entirely new design. The second main contribution lies in th
cryptanalysis of the two proprietary stream ciphers. We wee
able to adopt known A5/2 ciphertext-only attacks to the GMR-
1 algorithm with an average case complexity o23? steps. With
respect to the GMR-2 cipher, we developed a new attack which
is powerful in a known-plaintext setting. In this situation, the
encryption key for one session, i.e., one phone call, can be
recovered with approximately 50-65 bytes of key stream and
a moderate computational complexity. A major finding of our
work is that the stream ciphers of the two existing satellite
phone systems are considerably weaker than what is state-of
the-art in symmetric cryptography.

Keywords-Mobile Security; Satellite Phone Systems; Crypt-
analysis; Binary Analysis

|. INTRODUCTION

Mobile communication systems have revolutionized the
way we interact with each other. Instead of depending on
landlines, we can talk to other people wherever we are and

also send data from (almost) arbitrary locations. Esplgcial
the Global System for Mobile Communicatio@GSM) has

attracted quite a lot of attention and with more than four

billion subscribers in 2011, it is the most widely deployed

standard for cellular networks. Many other cellular netevor

standards likeJniversal Mobile Telecommunications System

(UMTS), CDMA2000 (also known asIMT Multi-Carrier

(IMT-MC)), or 3GPP Long Term Evolutio(LTE) exist and

are continuously enhanced to meet the growing customer

demands.

Cellular mobile networks require a so callegll site
to create a cell within the network. The cell site provides
all the necessary equipment for transmitting and receiving
radio signals from mobile handsets and the radio network.
For example, the cell site contains one or more sets of
transmitter/receivers, the necessary antennas, diggahls
processors to perform all computations, a GPS receiver for
timing, and other control electronics. Within GSM, the cell
site is calledBase Transceiver Statio(BTS) and other
cellular networks also require this kind of equipment. The
cells within a network have only a limited operating distanc
and thus a certain proximity to a cell site is necessary to
establish a connection to the mobile network.

In practice, however, it is not always possible to be close
to a cell site and there are many use cases in which no cover-
age is provided. Workers on an oil rig or on board of a ship,
researchers on afield trip in a desert or near the poles, @eopl
living in remote areas or areas that are affected by a natural
disaster, or certain military and governmental systemsaare
few of many uses cases where terrestrial cellular networks
are not available. To overcome this limitation, satellite
telecommunication systems were introduced that provide
telephony and data services based on telecommunications
satellites. In such systems, the mobile handset (typically
called satellite phone, ablsatphongcommunicates directly
with satellites in orbit and thus coverage can be provided
without the need of an infrastructure on the Earth’s sutface

At this point, there are two satphone standards that were
both developed in the past few years:

« Geostationary Earth Orbit (GEO) Mobile Radio Inter-
face (better known as GMR-1) is a family of ETSI
standards that were derived from the terrestrial cellular
standard GSM. In fact, the specifications of GMR
are an extension of the GSM standard, where certain
aspects of the specification are adjusted for satphone
settings. This protocol family is supported by several



providers and the de-facto standard in this area and hasxhibit patterns similar to crypto code. To overcome this
undergone several revisions to support a broader rangaroblem, we developed our own set of heuristics and pro-
of services. gram analysis techniques to isolate the cryptographic-algo
e The GMR-2 family is also an ETSI standard that rithms of the GMR-1 and GMR-2 standards implemented
is even closer to GSM. It deviates from the GMR- in the phones. We are the first to publish these algorithms,
1 specifications in numerous ways, most notably thethus disclosing which crypto algorithms are actually used t
network architecture is different. secure the communication channel in satphone systems.
The specifications of GMR-1 and GMR-2 are available Based on our analysis results, we also performed crypt-
since both are ETSI standards. However, the specification@nalysis of both algorithms. We introduce different vatsan
do not provide any information about implementation dstail of known and novel attacks and successfully break both
of security aspects. More precisely, it is for example notalgorithms. More specifically, GMR-1 uses a stream-cipher
publicly known which encryption algorithm is actually used that is a modified version of the AS5/2 cipher used in
to secure the communication channel between a satphorfeéSM, for which we develop both a known-keystream and
and a satellite. This implies that the security aspects of Ciphertext-only attack. Furthermore, we propose an lattac
both standards are poorly documented and proprietary. Thiggainst a specific GMR-1 channel which has some properties
is problematic due to the fact that an attacker can easiljhat we can take advantage of. In contrast, GMR-2 uses a
eavesdrop on the communication channel since the radiproprietary cipher, for which we present a known-plaintext
signal can be captured with antennas even at some distanaack whose parameters can be tuned with a time/keystream
to the satphone. At this point, it is thus unclear whattrade-off. Effectively, we thus demonstrate that curreatt s
effort would be needed by an attacker to actually intercepphone systems are vulnerable to eavesdropping attacks and
telephony and data services for common satphone systemiie results of this paper can be used to build an interceptor
In this paper, we address this problem and perform dor satellite telecommunication systems.
security analysis of the two satphone standards GMR-1 and ) o
GMR-2. More specifically, we are interested in the streamin SUMmary, we make the following contributions:
ciphers A5-GMR-1 and A5-GMR-2 implemented on the sat-  We are the first to perform an empirical security analy-
phones since they are responsible for providing confidentia  sis of the satellite phone standards GMR-1 and GMR-
communication channels. To assess the attack surface, we 2, focusing on the encryption algorithms implemented
analyzed two popular satellite phones that representaypic in the handsets. This includes reverse-engineering of
handsets: firmware images to understand the inner working of

1) The Thuraya SO-2510 phone implements the GMR-1 the phones, developing our own disas_sembler ano! tools
standard. It was released in November 2006 and one {0 analyze the code, and extending prior work on binary
of the most popular handsets sold by Thuraya. analysis to efficiently identify crypt(_)graphlc code.

2) The Inmarsat IsatPhone Pro implements the GMR- * We perform a formal cryptanalysis of the extracted
2 standardl and supports functions such as voice  &lgorithms and extend a known attack on GSM for
telephony and text/email messaging. It was introduced ~ GMR-1 and introduce an entirely new attack for GMR-
in June 2010 by Inmarsat. 2. Thus we are able to break the encryption in both

standards. The attacks can be tuned by a time/ciphertext

trade-off for GMR-1 and a time/keystream trade-off for

GMR-2. We thus demonstrate that the current satphone

standards are vulnerable to eavesdropping attacks.

In principle, satphones implement a hardware architec-
ture similar to typical mobile phones used in terrestrial
networks. However, since satphones operate according to
different standards, we had to reverse-engineer the phones
in detail to understand the algorithms implemented in them. Il. BACKGROUND AND RELATED WORK
More specifically, we developed our own set of tools to
disassemble the machine code and to perform typical binar
analysis tasks such as control and data flow analysis. This é)
challenging since satphones do not use the Intel x86 instru
tion set architecture but typically a combination of an ARM-
based CPU and a digital signal processor (DSP). Recentl
several techniques were introduced to detect cryptogecaph
code within a binary in a generic way [1]-[3]. While such A gatellite Telecommunication Systems
techniques can also be leveraged for our analysis, it turned , ) )
out that these methods have certain limitations in practice * 9eostationary orbit telephone network consists of a

since signal processing code and speech encoding algnsrithrﬁet _Of sat_elllte_s and terrestrial gatevyay/contro_l Stajars
depicted in Figure 1. Gateway stations provide the con-

Linmarsat actually refers to their standard as GMR-2+. nectivity to any tethered networks, e.g., telephone calls t

We now introduce the necessary background information
understand the basics of satellite telephone systemis, th

ecurity mechanisms, and the architecture of the mobile
(Zandsets. More information about these topics can be found
>i}1 the literature [4]-[8]. Furthermore, we discuss related
work in this area.



a landline are forwarded to the public switched telephone Satellite

network (PSTN). Satellite operators also run additional-co ST

trol facilities for mai.nte.nance and configur.ation purposes K_ Auth. Request (RAND)
Both types of transmissions employ conventional wavekengt 2l A3 4 A8 Auth. Response (SRES)
(C-Band) signals. Each satellite serves a specific region,

with each region being further subdivided by several spot Kc Cipher mode on

Cipher mode complete

beams. This mainly allows to transfer multiple signals from
different regions on equal frequencies. The system uses lon A
wavelength transmission (L-Band) for spotbeams.
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Figure 2. Authentication and encryption in GMR systems (dified)
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@ ‘ Q ey | QO"G’EE’;Iﬁ;"*’°' SRESBoth algorithms are not disclosed in the specification
- i and use the SIM card specific k&y as second input. After

End User Devices PSTN authentication, the encryption is switched on and all subse
guent communication on the relevant channels is encrypted
by a stream cipher denoted as A5-GMR, which is also not
publicly documented. Due to the limited computing power
f the SIM card and the limited bandwidth of the physical
onnection, the stream cipher is typically implemented on
e satphore The cipher is used to generate a keystream

specific for blocks of data, which we will denote fiames
In this protocol, the keystream is dependent on the frame’s

W™

Figure 1. Layout of a geostationary orbit telephone netw8itk

In this paper, we focus on the communication channeP
between end user devices and satellites. This is the onl
part of the system that is (partially) publicly documented
by the GMR specification [6], [9]. The official specification

discusses topics relevant to signaling, encoding, andaimi X i
aspects of the system. However, no implementation deta”gumberN andKc, which was derived fronRAND Due to

about the actual cryptographic algorithms that are used!iS architecture, only the stream cipher is responsibie fo

between satphones and satellites are disclosed. confldent|allt)_/ which is why we focus on this algorithm in
The frequency band in GMR systems is divided into the rest of this paper.

different channels and just like in GSM the Time Division ] .

Multiple Access (TDMA) time slot architecture is employed B- Satellite Telephone Architecture

which divides each channel into TDMA frames with mul- We now bneﬂy elaborate on the genera| architectural

tiple time slots. Severabgical channels(called channels  structure of satellite phones and the hardware behind such
from now on) are mapped on these time slots. There argevices. In a later section, we provide more details on the
different types of channels, but all are either traffic chelan  specific phones we studied during our analysis, including a
(TCH) for voice- or fax-data, or control channels (CCH). discussion of the actual processors used in typical sagshon
Data which is sent over any channel is encoded to add | general, the architecture of satellite phones is sintdar
redundancy and protect against transmission failures. FQpe architecture of cellular phones [10]. Both types of @®n
some channels, the encoded data is su_bse_quently encryptedwe to perform a lot of signal processing due to speech
The encoded (and encrypted) data is finally modulategyocessing and wireless communication, thus they typicall
accordingly before it is transmitted via the phone’s ang&nn ship with a dedicated digital signal processor (DSP) fohsuc
The encoding scheme differs from channel to channel a“ﬁurposes. Consequently, complex mathematical operations
is dependent on the respective reliability requirements agke for example data compression or speech encoding
defined in the various standards. are outsourced to the DSP where the actual computations
Figure 2 provides a highly abstract sketch of the authengre performed. More relevant for our purpose is the fact
tication and encryption protocol used by GMR-1 and GMR-that DSPs are also suitable for executing cryptographic

sending a request to the phone shortly after the phone hag)ding GMR cipher code.

established a connection. This request contains a random
numberRAND which is sent to the phone’s S!M card. On 2page 37 of the specification [9] actually states that the ygtion
the SIM card, the A3 and A8 algorithm are implementedalgorithtm has to be stored on the SIM card.



The core of the phone is a standard microprocessor We analyzed two representative phones that use the two
(usually an ARM-based CPU) that serves as the centralifferent standards we are interested in. More precisedy, w
control unit within the system. This CPU initializes the DSP analyzed the firmwares of the following two phones:
during the boot process. Furthermore, both processors shar
at least parts of the main memory or other peripheral devices
to implement inter-processor communication. To undetstan
the flow of code and data on a phone, we thus also need to
analyze the communication between the two processors.

The operating system running on a phone is typically a The starting point of our analysis was the publicly avail-
specialized embedded operating system that is designad wigble firmware upgrade of each of these two devices. The
respects to the special requirements of a phone system (e.gntire analysis was performed purely statically since vee di
limited resources, reliability, real-time constraints.g All not have a real satellite phone at our disposal that we could
of the software is deployed as one large, statically linkednstrument to perform a dynamic analysis. Furthermore, we
firmware binary. For our analysis, we were especially in-did not have access to a whole device simulator that enables
terested in the inter-processor communication functipnal debugging of arbitrary firmware image, thus we had to
provided by the operating system as well as the DSRlevelop our own set of analysis tools. However, the ARM
initialization routine. This is due to the fact that cipher code for the main microprocessor (used by both phones) can
code will likely be implemented in the DSP for performance be partially executed and debugged in a CPU emulator such
reasons. Our interest for the DSP initialization routinees  as QEMU.
from the fact that it typically reveals where DSP code is The approach we followed to analyze both satphones can
located in the firmware and how it is mapped to memory. be separated into the following five phases:

o Thuraya SO-2510 satphone that implements the GMR-
1 specification

o Inmarsat IsatPhone Pro satphone that implements the
GMR-2 specification

C. Related Work 1) Obtain the firmware installer (usually a Windows setup
program).

Satellite telecommunication systems are related to terres 2) Extract the firmware image from the installer.
trial cellular systems, the GMR-1 standard is for example 3) Reconstruct the correct memory mappings of the code
derived from the GSM standard. We can thus leverage and data sections in the firmware image.
work on the analysis of cellular systems for our security 4) |dentify the DSP initialization procedure in order to
analysis as we discuss in the following. Briceno et al. extract the DSP code/mapping.
published in 1999 an implementation of the GSM A5/1 and  5) Search for the cipher algorithms in the DSP code using

A5/2 algorithms, which they apparently obtained by reverse  specific heuristics as well as control and data flow
engineering an actual GSM handset [11]. However, no actual analysis techniques.

details about the analysis process were ever published and )
it remains unclear how they actually derived the algorithms, Several steps can be automated, but some manual analysis

Our analysis is also based on actual satellite phones, wg Nevertheless required. We successfully applied thisiatet

discuss the general approach in Section Il and providéo the two phones we analyzed. In addition, we speculate that
analysis details in later sections also other kinds of satphones can be analyzed in this way.

There has been lots of work on the security analysis of thd WO ass_umptions also helped us to find the relevant pieces
ciphers used within GSM [12]-[20]. A5-GMR-1 is related to of code in a shorter amount of time:
the A5/2 algorithm used within GSM, but the configuration 1) The key length of the stream cipher algorithms is
of the cipher is different. Our attack for this algorithm lolgi known.
on the ideas of Petrovic and Fuster-Sabater [13] and Barkan 2) The frame length is equal to the key length.
et. Al. [18] which we extended to enable a time/ciphertext 3) Since the GMR standards are derived from GSM, the
trade-off. ciphers bear at least some resemblance to the well-
Up to now, there has been no work on the security aspects known, LFSR-based A5 algorithms.
of satellite telecommunication systems that we are aware of

and we are the first to explore this topic. The first two assumptions can be derived from the publicly

available parts of the GMR specification [9]. The third as-
sumption was conjectured by us. Note that the standard only
specifies the general parameters of the crypto algorithats, b

In this section, we outline the general methodology weno details about the actual algorithm are publicly avaéabl
used for identifying and extracting cipher algorithms from Nevertheless, these assumptions enabled us to decrease the
satellite phones. Furthermore, we also discuss the assumpearch space of potential code. The last assumption is
tions that helped us during the analysis phase and providather speculative, but helped us in finding one of the two
an overview of our target satphones. algorithms.

IIl. GENERAL APPROACH



V. SECURITY ANALYSIS OF GMR-1 B. Finding the Crypto Code

We used the Thuraya SO-2510 phone as an example for 1he firmware of_the Thurayq S0-2510 is publically ava_iI—
a handset that operates according to the GMR-1 standargP!e as a 16 MB sized binary file from the vendor's website.
This decision was solely driven by the fact that the firmwareT N€ firmware file is neither (partially) packed nor encrypted
of this satphone is publically available from the vendor'sa@nd thus the ARM code can be analyzed directly. In the
website. In fact, we did not analyze any other GMR-1VerY beginning of thg ARM CPU initialization routlng, the
satellite phone, but since the protocol is standardizedrere a c0de sets up the virtual memory system by enabling the

confident that our analysis results apply to all other GMR-1MMU with a static translation table. Using this translation
phones as well. table, we deduced the correct memory mapping at runtime.

By searching for accesses to the DSP SARAM memory and
through string references within the ARM code, we were
able to determine the DSP setup code that copies the DSP

The Thuraya SO-2510 runs on a Texas Instrumentgode from the firmware into the SARAM before resetting
OMAP 1510 platform. The core of the platform is an ARM the DSP. Briefly speaking, the code is extracted and byte-
CPU along with a TI C55x DSP processor. This informationswapped (due to the differing endianness of both processors
can be deduced from corresponding strings in the binarfrom a number of separate chunks from the firmware image.
and from pictures of the actual components soldered on thgor convenience, we ran the related ARM code in the QEMU
circuit board [21]. Figure 3 provides a high-level overview emulator and dumped the resulting DSP code afterwards.
of the architecture. This yields approximately 240 KB of DSP code (located in
both SARAM and SRAM) that can be readily disassembled
by tools such a$DA Pro.

A. Hardware Architecture

DSP Since GMR-1 is derived from GSM, we speculate that
Mmu [ C55xDSP the cipher algorithm employed in GMR-1 bears at least
some resemblance to the A5/2 cipher from GSM. Due to the
nature of this algorithm (e.g., the presence of feedbadk shi
Q;SAF;VI/ registers), the cipher code is bound to contain a lot of bft sh
_<_‘—> Memory Interface ARM/DSP and XOR operations — unless it is somehow obfuscated.
" Controller (MIC) Shared Peripherals We thus implemented an analysis tool within IDA Pro that
SDRAM counts the occurrences of such instructions in each fumctio
— v and sets them in relation to the total number of instruc-
MvMu [ tions in the function. Similar ideas to spot cryptographic
AR Core primitives have already been published in the literatuie [1

[3]. Table 1| lists the six top-rated functions found when
using this heuristic. The four topmost functions are rather
short sequences of code that bear striking resemblance to
feedback register shift operators; a disassembly is dagpict

in Figure 12 in the Appendix. Further analyzing the callsite

of these four functions revealed an exposed memory region

) , __holding variables which equal
Both processors can communicate with each other using
« the assumed key length,

a special shared peripherals bus. Furthermore, they dtare t .
sarge RAM and c%n gccess additional memory (e.;., SRAM °* the assumed number and length of the feedback regis-
or Flash) on equal terms. Initially, DSP code or data has ters, and )

to be loaded by the ARM CPU into the specific memory * the assumed frame-number lengths (see Section IIl).
regions of the DSP. The DSP code can be located in eithefhese were all strong indicators that we have spotted the
the on-chip SARAM (which holds 96 KB of memory) or in correct region of the code. Starting from this code area, we
the SRAM, which is accessed through the memory interfacéeverse-engineered the relevant code portions to obtain th
controller (MIC). Writes to the SARAM region of the DSP cryptographic algorithm employed in the DSP.

are especially interesting for extracting the correspogdi )
DSP code. The official OMAP1510 documents suggest preS: Structure of the Cipher

defined memory regions to be used by the ARM-MMU The cipher used in GMR-1 is a typical stream-cipher.
for mapping this memory area [22]. During our analysis,Its design is a modification of the A5/2 cipher [13], [18],
we could confirm that the firmware uses exactly the sameavhich is used in GSM networks. The cipher uses four
mappings. linear feedback shift registers (LFSR) which are clocked

Figure 3. The OMAP1510 Platform [22]
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Figure 4. The A5-GMR-1 cipher
i 9 i . . . . .
F“ggg%gggress % re'%%;f Instr. the right. When the cipher is clocked for ti¢h time with
0001CFC8 41% irregular clocking active, the following happens:
8881&22 g%‘: 1) The irregular clocking compone@tevaluates all taps
00014C9C 25% of R4, the remaining registers are clocked accordingly,
00014CAC 25% ie.
Table | a) Iff M(R41, R4, Ra15) = Rans, registerRy is
FUNCTIONS RATED BY PERCENTAGE OF BITLEVEL INSTRUCTIONS clocked i i i i
b) Iff M(R471,R4767R4715) = R4,6, registeng is
Size Feedback polynomial Taps _ Finpl clocked. _ .
R | 19 a9 4+z®rz2"+2%+1 16,15 11 c) Iff M(R41,Ra6,Ra15) = Ra1, registerRs is
Ro 22 22 + x2! + 217 + 13 +1 3,8,14 1 Clocked
Rs3 23 223 4222 4 219 4 218 41 415,19 0 .
Ry | 17 2V 42M 421842941 1615 - 2) The taps ofR;, R, and R5 are evaluated and one bit
Table Il of keystream is output accordingly, i.e.,

CONFIGURATION OF THELFSRS

21 =M(R1,1, R16,R1,15) ® M(R2,3, Ra g, R2,14)®
M(Rs3,4, Ry15, R3,19) ® R1,11 © Ra1 @ R o

irregularly. We call these registei®,, Ro, R3 and Ry, see is generated.
Fig. 4 for a schematic of the structure. 3) R is clocked.

Comparing A5/2 and A5-GMR-1, we see that for most A5-GMR-1 is operated in two modesgitialization and
registers the feedback polynomials and also the selecfion @enerationmode. Running the cipher in former mode in-
input taps for the non-linear majority-functiom with cludes setting the initial state of the cipher, which is done

M: {0,131 o {0,1} in the following way:
Y ’ 1) All four registers are set to zero.
T4 2221 @ TaTo O Lol 2) A 64-bit initialization valuel is computed by xor'ing
were changed, see Tab. Il for details. Also, the positions the 19-bit frame-numberN and 64-bit key K in a

of the bits that are xor'ed with the respective outputs of certain way. However, the specific mapping is not
the majority functions are different. For curious reasais, relevant in the remainder.
feedback-polynomials have five monomials. 3) [ is clocked into all four registers, i.eR; is clocked

and one bit off is xor'ed with the feedback-bit?, is

D. Mode of Operation clocked and xor’ed with the same bit &f etc. While

Next we focus on the mode of operation. Clocking a single doing this, no irregular clocking takes place, i.e., the
LFSR means evaluating its respective feedback polynomial taps of R4 are not evaluated.
and using the resulting bit to overwrite the leftmost positi 4) The least-significant bits of all four registers are set to

of the LFSR, after shifting its current state by one bit to 1,i.e., R0 =R20=Rs0=Rsp=1.



After all registers are initialized, irregular clocking &ti-  a potential initialization-state faR,, R, and Rs. To test the
vated and the cipher is clocked 250 times. The resulting candidate, the registers are initialized with the guessdukv
output bits are discarded. of R4 and the state candidate, then the cipher is clocked for

Now the cipher is switched into generation mode andseveral times and the resulting keystream is compared with
clocked for2 - m times, generating one bit of keystream the known keystream. If both keystreams match, we have
at a time. We denote thieth keystream-bit b)el(N), where  most likely found the correct initial state. Given the frame
250 <1 <250+ 2-m is the number of irregular clockings numberN that was used to initialize the registers, can
and N the frame-number that was used for initialization. be derived efficiently.

The number of keystream-bits depends on the type of The known-keystream attack can be modified in order to
channel for which data is encrypted or decrypted, se®btain atime/keystream trade-off which enables a cipkerte
Tab. Ill. Note that the encoded blocks on channels TCH6pnly attack. The number of keystream bits required to solve
FACCHG6, TCH9, and FACCH9 are always multiplexed with the equation system is directly dependent on the number of
ten bits of the SACCH channel. After- m bits have been unknowns. We can reduce the size of the equation system by
generated, the cipher is re-initialized with the next frame guessing parts oR;, R, and R3 as well. By k1, ko, k3 we
number. denote the number of bits we guess for each of the respective
registers, thus the number of variables is reduced to

n: size of m: size of
Channel raw dat_a encoded_ data 18 — ky 21 — ks 22 — ks
TCH3/SDCCH 80784 bits 208 bits v = 4 4
TCH6/FACCH6+SACCH | 144/188+10 bits  420+10 bits 2 2 2
TCH9/FACCH9+SACCH | 480/300+10 bits 648+10 bits| +(18 _ kl) + (21 _ kg) + (22 _ kg)
Table Il X .
PAYLOAD SIZES IN GMR-1 [9] On the downside, the number of guesses increases and

becomes2!6 . 2k1+k2+ks in the worst case. However, this
makes it possible to mount a direct ciphertext-only attack
Depending on the direction bit, either the first or theon any of the channels (see Tab. Il) which exploits the facts
second half of the keystream is used. Here, we assume thdtat encryption is applieafter encoding and encoding is
only the first half of each block with onlym bits is used, linear. This attack was inspired by a work of Barketnal.in

therefore we define’ as the actual keystream with 2003 [23]. Given a block of raw dat#) of n bits which is
transmitted in theV-th frame on one of the relevant channels
o — (Z(O) 20 ey ey 5(2) ) ; L ) . L
= \B2500 - -+ #2504m> #2500 * * 5 #2504m> #2500+ ++ )2 in GMR-1, encoding is basicaftya matrix multiplication,
E. Cryptanalysis i.e.,
Since A5-GMR-1 is similar to A5/2, known attacks N = (@™ .G) and M) =W g V)

against that cipher [13], [17], [18] apply. We build on the
ideas of Petrovic and Fuster-Sabater [13] and present whereG is called the: xm generator-matrix of the code. By
known-keystream attack which systematically guesses alt!) we denote &ey-frame(i.e., a block of keystream bits
possible2'6 initial states of R,. Knowing R, completely to encrypt one frame of equal size) for one directigff))
determines the clocking behavior of the cipher and allows uss the encoded and") the encoded and encrypted block
to express the known keystream as binary quadratic equatiorf m bits. A property of the encoding scheme is that there
system in variables which determine the statd&ofR,, and  exists a corresponding parity-check mafxof (m—n)xm

R3 before warm-up. Taking the fixed bits in these LFSRssize with

as well as symmetries in the quadratic terms into account,
the equation system can be linearized by replacing quadrati

terms, thus yielding a linear equation system if (V) is a valid code-word (and was received without bit-
A-x=2 (1)  errors). In this case, we can set up an equation system in
the variabIeSZfN) with 250 < 4 < 250 + m by computing
the syndrome: = H - ¢V, i.e.,

H- /W) =0 and therefore H- ) =H . (V)

in v variables with

18 21 22
v_(2>+<2)+<2)+(18+21+22) = 655 H.. _ @
; ) ) original variables ] ) )
linearized variables 4After encoding, a pseudo-random sequence is xor'ed witretttaded

. . . _ block “[...] to randomize the number of Os and 1s in the outpiit
for each guess Oft,. After Obtamm9655 “nearly mdepen stream.” [24]. This process is callegramblingand not to be confused with

dent equations, each of these systems can be solved, gjeldifhe subsequent encryption-step, which does basically ahes s However,

since the parameters of the LFSR used to generate the sangrsbhuence

3The firstm bits are used on the handset’s side for decryption, on theare publicly known, scrambling can be inverted easily whigstwhy we
satellite side for encryption ignore it completely.



This equation system hgsn — n) equations and is there- equation systems on average. One of these systems has the
fore underdetermined but completely independent from théorm

encoded plaintext. Given that < (m — n) holds due to a .

proper choice oft:, ko, and ks an(d combining Eq. 1 and S.w=r with S=H-A, r=H (D)
Eqg. 2, we can set up a uniquely solvable equation systemwhere D is a 648 x 658 matrix responsible for demulti-
plexing FACCH9/SACCH by removing ten bits from A

is a 648 x 345 matrix describing the state of the cipher
for 648 of 658 clockingsH is the 348 x 648 syndrome

parts of Ry, Ro, R3) andS a (m —n) x v matrix. Solving the matrix for this particular channel ansl a slightly overde-
right-hand system results in a potential initializatidats. fined 348 > 345 matrix. As stated above, pre-computations

This can be tested by deriving a key candidate which ca@"d LU-decomposition can be used if enough memory is

then be used to generate the keystream for a different fram@vailable. _ _ _
number) and test whether the following relation holds: Evidently, there are several variants of this attack pdssib
on different channels, even more so when multiple frames

H- (M) g (M) 20 with N—1>M>N +1. are used. These attacks have a lower computational com-
plexity but require more ciphertext. To justify our apprbac

The attack can be greatly accelerated by pre-computing angle argue that being able to intercept a single block with-
storing all possibleéS matrices in advance. Even betterSif  out errors is a more reasonable assumption than receiving
is quadratic, we can store the LU-decompositions of all posmultiple consecutive blocks correctly.
sible matrices, which reduces solving the equation systems
to a forward- and backward-substitution step. Typica8y,
is not quadratic, but can be made quadratic by dropping an To obtain the code responsible for implementing the
appropriate selection of rows while maintaining full rarfk o Cipher according to the GMR-2 standard, we analyzed the

H-(A-z)=S-z=r

whereA is am x v matrix for a particular guess at, (and

V. SECURITY ANALYSIS OF GMR-2

the matrix, i.e., latest publically available firmware image of the Inmarsat
IsatPhone Pro, which was released in June 2010. Only
S"=L-U with S"=E-S Inmarsat handsets support the GMR-2 standard at this point

, ) , i . and we are confident that our analysis results apply to all of
whereS’ is av x v matrix, U is an upper triangular matrix these satphones

andL a lower triangular matrix. For each guess, we need to
pre-compute and store the tugle, U, E) in order to solve A. Hardware Architecture

S-x = rin two steps. First, we computé = E - (H'C(N_)) The Inmarsat IsatPhone Pro runs on an Analog Devices
which is then used to solve the equation system with thg eMans AD6900 platform. The core of the platform is an
LU-decomposition ofS’, i.e., solve ARM 926EJ-S CPU, which is supplemented by a Blackfin

DSP (see Figure 5 for a schematic overview). This archi-
tecture can be deduced from plain text strings within the

Finally, we propose an attack against the FACCHO9 chanfirmware image. We identified an operating system function

nel which has some properties that we can take advantadgat returns information on the underlying hardware of the
of: one encoded and encrypted bladR) has658 bits. This system and this function returns the platform name as & stati

attack requires only one of these blocks, which must b&tfing: , o
received without a single bit-error, otherwid - () Both CPUs connect to the same bus interface, which is

H - >(™). The FACCHO channel is always multiplexed with 2ttached to the system RAM, any external memory that
ten bits from SACCH which can be removed, but then weMight be present as well as the shared peripherals (e.g., SIM
have to accoufitfor this when generating tha matrices.  ¢&'d: keypad, SD/MMC slots, etc.). The system is initialize
By choosingk, = 3,ks — 6 and ks = 8 the number of by the boot ROM code of the ARM CPU. The ARM CPU
variables representing the remaining unknown bits of thdhen has the task to initialize the DSP for further operation

LFSRs isv = 345. Attacking the demultiplexed FACCHY B Finding the Crypto Code
channel directly by utilizing only one block of encrypted
data thus requires solving

L=y and U-y=nx.

The firmware file is delivered in a special, proprietary
format. When loading it into the update program from
(216 217) /2 — 932 Inmarsat, the program extraktthree files, with each file
having a header a0 bytes. After removing the header, two
SMultiplexing is done by taking 52 encoded bits from FACCHane  esulting binary files can be ARM-disassembled by setting

catenating ten bits from SACCH and then appending the reéntpifo6
encoded bits from FACCH9. We account for this by clocking digher 6This was discovered while disassembling the Dynamic Linbraiies
ten times between the generation of #iiznd and53-rd equation. (DLLs) of the update program.



the correct base address, which can be deduced from theere able to reconstruct the actual memory layout of the

respective headers. The third file is seemingly used in ®SP in RAM.

standardized Device Firmware Upgrade (DFU) protocol and As there is no support for Blackfin assembler in IDA

we discarded it from the analysis process since it is noPro, we developed our own disassembler with the help of

relevant for our security analysis. the official Blackfin reference that disassembles the DSP
The two relevant firmware files contain plenty of strings. firmware image by following the program flow using a

Based on these strings, we can make the educated guessursive traversabpproach:

that there are indeed two separate_platforms combining 1) The disassembler performs a linear sweep over the
an ARM926EJ-S CPU and a Blackfin DSP, where both image to obtain target adressesoall instructions.

pLocessorsdsrfl_zls\re tlhe same memory for ;che|r code ‘T‘d gata. ) In asecond step, the disassembler analyzes all adresses
The second file also contains string references related to identified in the first step and starts to recursively

encryption, which lead us to focus on this part of the disassemble these locations by following the program
whole firmware image. The ARM part of this file can flow. Each subsequentall and jump instruction is

be disassembled using existing tools such as DA Pro. In taken andswitch statements are resolved on-the-fly.

con_trast, the memory mapping of the DSP code cannot By following this approach and assuming that no

be |nferred without additional efforts. Hovx_/ever, a correct obfuscation is used within the firmware image, we can
mapping of the DSP code and data section is required for our be sure that only code that is actually reachable by the
analysis since correct references in subroutine callsrimgst program flow is interpreted as code

refgrenges frorg vr\]nthlndthe code are crucial to disassemble 3) In a third step, all gaps between valid code blocks
and understand the code. ] S (i.e., functions) are disassembled recursively to obtain

Therefore, we reverse-engineered the very first initializa functions that are accessed by indirect means.

tion routines in the Blackfin code, which turned out to hold ) )
a DSP memory initialization routine that builds the DSP_ APPIYing our custom disassembler on the reconstructed

code and data from the firmware image into another memor{?SP-image yielded more than 300,000 lines of assembler
region (presumably RAM). In the firmware image, the actualcode, where cross-references are also annotated. An exampl

DSP code and data regions are stored as multiple chunks 8f & disassembly is shown in the Appendix in Figure 11.
data that are either uninitialized (i.e., filled with nullteg) ~ DU€ to the large amount of DSP code, an extensive manual

or initialized. Initialized blocks are repeated consealiiin ~ 2nalysis is unfeasible in a reasonable amount of time. Hence

memory multiple times. The meta information for each dataV€ @gain applied the same heuristics used in the previous
chunk (i.e., chunk type, block length, etc.) is prepended a@nalysis to spot cryptographic code, i.e., we searched for
a header. The first chunk starts at a fixed address and eacHProutines holding a significant percentage of matheatatic
header also contains an offset to the next chunk in memoryP€rations one would expect from an encryption algo-
As no encryption or compression for the DSP code and!thm [11-[3]. Unfortunately, this approach did not revealy

data is used within the firmware, the corresponding firmwar&©de region that could be attributed to keystream generatio
regions can be extracted directly. Using this informatise, 1S IS explained by the fact that the DSP code also contains
plenty of demodulation and speech encoding algorithms that

naturally bear some resemblance to cryptographic algosth
in that they make extensive use of mathematical operations.
Hence, we decided to follow another approach. The

D?;:Céf;,”,e Blackfin code contains a number of debug messages which
include the name of the source files of the respective
System code. This allowed us to directly infer preliminary func-
Shared »| RAM tion names and to derive the purpose of several functions.
Peripherals <_| More specifically, we identified one subroutine where the
— debug message contains a reference to a source file with
Boot v the name..\..\nodem i nternal\ Gw2p_nodem_
Rom [ Bus Controller > External Appl yCi pher . c. Hence, we named this functiokpply-
e— Memory Cipher() and we found out that it takes two 120-bit inputs
L — which are then xor'ed. Since we deal with cryptographic
ARM Core code, we assumed that one of these parameters is the output
of a stream cipher because the lengths match the expected

frame size of 120 bits according to the GMR-2 specifica-
tion [26]. Starting from this subroutine, we identified the
Figure 5. The LeMans AD6900 Platform [25] cipher code by applying a number of different techniques



that we explain in the following. All these techniques aim nested subroutine calls). In the last step, we analyzeathes
at narrowing down the potentially relevant code base inremaining functions manually. At first, this analysis reeea
the disassembly. This is an essential and inevitable step ithe subroutine which encodes the TDMA-frame counters
the analysis process since the keystream generation codeirgo a 22-bit frame-number. Shortly after this function,
located in an entirely different part within the DSP codettha the actual cipher code is called. The algorithm itself, as
ApplyCipher() explained in the next section, is completely dissimilar to

First, we created theeverse call graphof the ApplyCi-  A5/2, which also explains why we were not able to spot the
pher() function, i.e., we recursively identified all call sites cipher with the same methods as in the analysis of GMR-1.
of this subroutine. Each call site is represented as a node )
in the graph, and an edge from one node to another node: Structure of the Cipher
indicates that the destination node’s subroutine is called After having obtained the cipher’s assembler code, we had
from the source node’s subroutine. This process is repeatdd find a more abstract description in order to enhance intu-
until there is no caller left. Figure 6 depicts the reversié ca itive understanding of its way of functioning. We arbithgri
graph of ApplyCipher() where root nodes (shown in grey) chose to split the cipher into several distinct components
constitute thread start routines. Subroutine names, #gme ~ which emerged after examining its functionality. Note that
were extracted from debug string within the correspondingor the sake of symmetry, we denote the cipher as A5-
subroutine code. Accordingly, in forward call graph an  GMR-2, althtough it shows no resemblance to any of the
edge from one node to another indicates that the sourc@5-type ciphers and is called GMR-2-A5 in the respective
node’s subroutine calls the destination node’s subroutinespecification [27].

The forward call graph is built recursively starting from a  The cipher uses é4-bit encryption-key and operates on
given root node. bytes. When the cipher is clocked, it generates one byte of
Our first approach was to manually back track the dat&eystream, which we denote by;, wherel represents the
flow of the keystream parameter ApplyCipher() Unfortu-  number of clockings. The cipher exhibits an eight byte state

nately, this did not turn out to be promising since a myriad ofregisterS = (So, S1, . . ., S7)2s and three major components
additional functions are being called in between the threadve call 7, G, and H. Additionally, there is a 1-bit register
creation andApplyCipher() We were only able to identify 7 that outputs the so-called “toggle-bit”, and-dit register

a subroutine (denoted by us &eateChannellnstancg() C that implements a counter. Figure 7 provides a schematic
that allocates the memory region of the key data befor@verview of the cipher structure. In the following, we détai
initializing it with zeros. However, we needed to find the the inner workings of each of the three major components.
piece of code that fills the keystream buffer with the actual
key data. Additional techniques were needed that enable us
to exclude those large portions of code that are irrelevant
for this purpose.

An analysis of the control flow graphs of the thread start
routines (the nine grey nodes in Figure 6) suggests that
each routine implements a state machine using swigch
statement. By generating the forward call graph for each ﬁ& | Se
case in theswitch statement, we can derive which functions
are called in each corresponding state. Most notably, this
allows us to identify the points at which the keystream
buffer is created (by callingCreateChannellnstancg(and
the encryption of the plain text happens (by callfgplyCi-
pher(). The code responsible for generating the keystream
naturally has to be called in between these two points.

The remaining code (approximately 140 subroutines) was [
still too large for a manual analysis. In order to further ﬂ % e e v e
narrow down the relevant code parts, we created the forward L L L 1T T 1 T |
call graphs of all nine thread routines and computed the K“|K1|K2|K3|K“|K5 K6|K7‘
intersection of all the nodes in the graphs. The idea behind_: | l l l l l l/l l)
this approach is that in every case the stream cipher has i/ . @@
to be called eventually, regardless of the actual purpose of Y
the thread. The intersection greatly reduces the candidate
set of code regions from about 140 subroutines to only
13 functions shared by all threads (not including further Figure 8. F-component of A5-GMR-2
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Figure 7. The A5-GMR-2 cipher
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(thr_Gmr2pBeiTchDataRx ) (thr_ ) (thr_ TchDataRx ) (thr_Gmr2pBciSch )

(" WaitTchReq_AT_Gmr2pBciTchDataRx

sub_2050d9de

(thr_ TxRx ) (thr_d TchTxThread )
o —
[ WiosAllocCnf_AT_Gmr2pBcITchRx ] [thr_Gmr2pEngModeBclTxCW] [thr_GerpEngModeBclTXOnOff] [ Gmr2pBclTchTx J
~ — \ T

sub_2050dae4

(‘sub_204a4358 )  (thr_Gmr2p_modem_ChanEst OQPSK_NB2 )  ( Gmr2p_LiSheliMod )

(" Gmr2p_modem_ChanEst 0aPSK NB ) | (

Gmr2p_modem_Mod_GMSK_NB )

[ Gmr2p_modem_ApplyCipher J

Figure 6. Reverse call graph éfpplyCipher()(the ten grey nodes are root nodes)

z Ti(@) To(z) | To(Ti(2))
(0,0,0,0)2 2 4 6
(0,0,0,1)2 5 5 3
(0,0,1,0)2 0 6 4 *
(0,0,1,1)2 6 7 2
(0,1,0,0)2 3 4 7
(0,1,0,1)2 7 3 1
(0,1,1,0)2 4 2 4 *
(0,1,1,1)2 1 1 5
(1,0,0,0)2 3 - 7
(1,0,0,1)2 0 4 *
(1,0,1,0)2 6 2
(1,0,1,1)2 1 5
(1,1,0,0)2 5 3
(1,1,0,1)2 7 1
(1,1,1,0)2 4 4 *
(1,1,1,1)2 2 6

Table IV

71 AND T2 AS LOOKUP-TABLE

of the mentioned multiplexer

a=N({tK.®p)=N(cmod 2, K. ® p).

The output of the upper multiplexer is rotated to the right
by as many positions as indicated by the output7ef
therefore the8-bit output Oy and the4-bit value O, are

of the following form,

Oo = (K7i(a) 3> T2(T1(@)))2s
O1 = (Ke7©pr ® K3 D ps,
Kes®ps® Ko @ po,
K.5®ps ® Ke1 @ pr,
Kes®ps® Keo®po)a.
The G-component gets the outputs of ttlecomponent

as inputs, i.e.Jy = Op, I; = O1. Additionally, one byteS,
of the state is used as input. As can be seen in Figure 9,

We begin with theF-component, which is certainly the
most interesting part of this cipher — Fig. 8 shows its indérn
structure. On the left we see anotlédrbit register split into
eight bytes(Ko, K1,..., K7)ss. The register is read from
two sides, on the lower side one byte is extracted according
to the value ofe, i.e., the output of the lower multiplexer
is K.. The upper multiplexer outputs another byte, but this
one is determined by a-bit value we will call«. On the
right side, two smaller sub-components

Ti:{0,1}* —={0,1}?
Tz : {0,1}% —={0,1}3

are implemented via table-lookups (see Tab. 1V). Also twoiae sub-components, denotedzisBs,

bit-wise modulo-2 additions are used. The input7f is

>0,

>0

7

Figure 9. G-component of A5-GMR-2

B3, are employed
again, they are implemented in the form of lookup-tables.

determined by, K. and the toggle-bit. Note that we use  gach of these components works it inputs and equally

p = Zi-1 @s a shorthand to denote one byte of keystréamgy,ns4-hit. After analyzing the tables, we found that all
that was already generated. We model the behavior of thg, .. simply implement linear boolean arithmetic, i.e.,

small vertical multiplexer byV(-), which we define as
N :{0,1} x {0,1}® —{0,1}*

if t=0,
(t,I) — (x3,$2,$1,$0)2 :
(x7,x6,$5,$4)2 |f t=1.

With the help of\V, which returns either the higher or lower
nibble of its second input, the following holds for the outpu

Bi:{0,1}* — {0,1}*

x> (v3 © w0, 23 © T2 ® T, T3, T1)2,
By : {0,1}*+— {0,1}*

x> (1,23, 20, T2)2,
Bs:{0,1}*+— {0,1}*

x = (z2, 20,23 B 21 ® X0, T3 B 20)2.



Since these sub-components and the modulo-2 addition ai®2. Mode of Operation
linear and all other operations on single bits just amount to Next we describe the mode of operation. When the cipher

permutations, th€-component is entirely linear. Therefore, 5 clocked for the-th time. the following happens:
; _hi / / ; ; ! '
we can write thes-bit outputsOy), O} as linear functions of 1) Based on the current state of tife, C-, and T-

the inputsio, I and S, i.e., register, the cipher generates one bytef keystream.
2) TheT-register is toggled, i.e., if it wa$ previously,

O} = (lo,7 ® Ipa ® So5, L :
0 ( 0.7 04 0:5 it is set to0 and vice versa.

fo7 ® lo6 @ To,a ® So,7, 3) The C-register is incremented by one, wheénis
Io,7 @ So,4, reached the register is reset(o
Ins © So6, 4) The S-register is shifted by bits to the right, i.e.,

S7 = Sg, S := S5 etc. The previous value of; is

Lis® i@, .
be L A0 fed into theG-component, the subsequent outgiytof

Lz @ Ii0)2, H is written back toSy, i.e., Sy := Z;. This value is
O} = (Io,;3 ® Io,0 @ So,1, also passed to th&-component as input for the next
Tos®Io2 ® oo D Sos, iteration.
Ios @ So0, The gipher is ope_rgt(_ad i.n two moddajtializatic_m and
Tox @ Soa, generation In t.he initialization phase, the following steps
/ are performed:
1,2 1) TheT- andC-register are set to.
I 0)2. 2) The 64-bit encryption-key is written into thek-
_ ) , ) ) register in theF-component.
Finally, the 7{-component getd;, = O, and I; = O, 3) The state-registef is initialized with the22-bit frame-
as input and constitutes the non-linear “filter” of the ciphe numberN, this procedure is dependent on the “direc-
(see Figure 10). Here, two new sub-components tion bit” but not detailed here as it is irrelevant for the

remainder of this paper.

. 6 1
2 {0, 1}6 =10, 1}4 After C, T andS have been initialized, the cipher is clocked
Se : {0,1" — {0,1} eight times, but the resulting keystream is discarded.

. . _ After initialization is done, the cipher is clocked to
are used and implemented via lookup-tables. Interestingly enerate and outout actual kevstream bvtes 397) we
these tables were taken from the DES, i®.,is the second 9 b Y yes.

. - >
S-box andSg represents the sixth S-box of DES. However,qer.]OFe thel th. ( > 8) byte of keystream generated after
o initialization with frame-numbeV. In GMR-2, the frame-
in this cipher, the S-boxes have been reordered to accountfcr)]umber is alwavs incremented after 15 bvte of kevstream
the different addressing, i.e., the four most-significaitg b Y y y '

of the inputs taS, andS, select the S-box-column, the two which force? are _|n|t|aI|zat|0n of the cipher. Therefoﬂgae
T : o keystreamZ’ that is actually used foiV € {0,1,2...} is
least-significant bits select the row. Note that this is @luc )
: . . made up of blocks of 15 bytes (which we call a key-frame
for the security of the cipher. The inputs to the S-boxes are .
with respect to frame-numbeé¥) that are concatenated as

follows:

0 0 1 1 2 2
VA /4 SN/ N/ SN/ N/ S BN/ SO Y

E. Cryptanalysis
Z, . . .
> In this section, we present a known-plaintext attack that

is based on several observations that can be made when
carefully examining theF-component (and the starred rows

. in Tab. 1V):
Figure 10. #-component of A5-GMR-2
1) If a € {(0,0,1,0)2,(1,0,0,1)2} thenT;(a) = 0 and
swapped with the help of two multiplexers, depending on 2) ?Exﬂe(?{[zz)zl 41 g;us((folzl(jov)((})’{EZZ{%%’)ISQQ;@
the value oft. Given the inputd}, I}, andt we can express (s (@) ’—74’th121’sO7 0 7(/\/?0 ) /\1/(1 K1)
2(/1 — T 0 — 9 4), 9 4))24-

the I-th byte of keystream as 3) If Ti(«) = ¢, both multiplexers select the same key-

byte. We call this aead-collisionin K.
In the following, we describe how to obtaik, and K4 with

- {(82(11>,86<Ia>>24 it £ =0,
high probability, which is then leveraged in a second step

(S2(I), So(I}))ar i £ =1.



in order to guess the remainidg bits of K in an efficient
way.

The key idea to derivd(, is to examine keystream bytes
(Z1,Z]_1,Z]_g)es with i € {8,23,38,...} in order to
detect when a read-collision ik, has happened during the
generation oZ!. Please note that due to our choice difiis

Zé = Zig)v ZéS = Ziili)’ Zi/’>8 = Zig)’ R
holds, i.e, for eachi we already know that the lower
multiplexer has selectefly. In general, if the desired read-
collision has happened in thE-component, the outputs of
the F-component are
Oo = (p3 @ a3, p2 D az,p1 O a1,po D ag,
Ko7, Ko, Ko5, Ko.4)2,
01 = (Ko7 ®pr ® as, Kog ® ps © oz,
Kos®ps @ ar, Koa®ps® )2,

and the subsequent outputs®fare
Oy = (ps ® az ® po ® ap ® So 5,

P3P as B p2 @ as®po® oy ® S,

p3 @ asz @ So 4,

p1 @ a1 @ Soe,

Ko7 ®p7 @ asz® Ko ®ps ©ar @ Kou @ ps ® ap,

Ko7 ®pr ®az® Koa®ps® ap)e,
O} = (Ko7 ® Koa® So,1,

Ko7 ® Ko ® Koa @ So3,

Ko,7 @ 50,0

Ko 5 ® So,2,

Ko,6 ® ps @ as,

Ko,4 @ ps @ ap)e.
Considering the{-component, we also know that

Z; = (82(01), S6(0p))as

holds.
In order to determinek,, we examine the inputs and
outputs ofSg and S, in the H-component, starting witts.

Due to the reordering of the DES S-boxes, the column o

Se is selected by the four most-significant bits@f. If we
assume a collision i, has happened while generatigg,
we can compute these most-significant bits due to the fa
that ' ‘
So=Z_ s and p=1Z,

are also known for all of our choices af If, for a €
{(0,0,1,0)2,(1,0,0,1)2} the lower nibble ofZ; is found in
the row with indexs, a collision may indeed have happened
and the lower two bits of0) must be (3:, Sy)2, Which
implies
Ko7 ® Kos ® Koa=B1®pr®asz®ps oy Dps® ag,

Ko7 @ Koua=Bo®pr® oz ®ps® ag.

Here we gain “some” information about the bitsigf, K 5

can even be computed. We can then use the outpSt ob
verify whether a collision has happened for the particalar
we used above. Due to the structure of the S-box, there are
only four 6-bit inputs~ with

Sa(v) = (Zz{,'?’ Zz{,G’ Zz{,4)2'

Due to our partial knowledge aboUKy 4, Ko 5, Ko,7)2 We
can test each whether the following relations hold:

7!

1,57

5 =80 ® pr ® a3 ®ps & ag ® So 1,
Y4 D71 ;30 Opr D as®ps @ oo P So3Dps® s,
v3 D Yo <5, ® pr @ a3z D So,0,
Yo @5 21 © Pr © a3 © Ps B a1y S Pa B g S o1 B o2

If all of these relations hold for one, we can be sure with
sufficiently high probability that a read-collision has @i
happened. A probable hypothesis @y is now given by

(73 @ S0,0,71 © P6 D 2,72 © So,2, 70 © P4 D g,
P3 @ ag,p2 @ az,p1 ® a1, po @ ag)a.

Our method detects all read-collisions, but there may aéso b
false positives, therefore the process described abové mus
be iterated for a few times for different portions of the
keystream. Typically, over time, one or two hypotheses bccu
more often than others and distinguish themselves quite fas
from the rest. Experiments show that about a dozen key-
frames are usually enough so that the correct key-byte is
among the first two hypotheses. The principle we outlined
above not only works forKj, it also allows to recover
the value of K4 when o € {(0,1,1,0)2,(1,1,1,0)2},

i €{12,27,42,...} are chosen appropriately.

In the following we assume that we have obtained a set
of hypotheses forKy, — we might also have<,, but this
improves the efficiency of the remainder of the attack only
slightly. Based on theses hypotheses, starting with the mos
plausible one, we can brute-force the remaining key-bytes
separately. Please note that the following process wily onl

{?roduce the correct key, if our hypothesis 6§ was correct.

0 obtain Ky, ..., K; we examine a few keystream-bytes
for a second time, while focusing on th&-component.
For eachK; with j € {0,1,...,7} for which we already

Have a hyplothesis, we can use the corresponding key-stream

7

bytes(ZZ{Jrja 1+j—1

compute

Z,j_g)es With i € {8,23,38,...} to

a=N(jmod2,K;®Zj,; ).

If we do not already have a plausible hypothesis fof
with & = 71 («), we can simply try out all possible values
6 € {0,1,...,255} and compute the output of the cipher.
If we find for one value that the output equay, ; we
keepd as hypothesis for(;,. This can be repeated for a
few different; until a hypothesis for the full key has been



recovered. Since the validity of the full hypothesis solely The cipher code inside the firmware was not specifically
depends on the correctnessigf, we must verify each key protected against reverse-engineering efforts. The diffic
candidate by generating and comparing keystream. in reconstructing both algorithms thus stems from the in-
The overall complexity of this attack depends on howherent complexity in analyzing large pieces of code. If
many hypotheses foK, are used to derive the remaining software engineers had employed state-of-the art obfioscat
key. Given 15-20 key-frames, the correct byte fip is  schemes, the analysis could have been at least complicated
usually ranked as best hypothesis so deriving the completgignificantly. Furthermore, implementing the ciphers incha
key means testing ware would also hamper reverse-engineering.
In this paper, we do not address the issue of obtaining
(7-2%)/2~ 2" ciphertext or plaintext data. However, follow-up work on

single byte hypotheses for the missing bytes (on average MR-1 has done this, executing the attack on GMR-1 and
gie byte hyp . ing byte ) 9 evealing the session key with moderate effort [30]. This
Clearly, a keystream/time trade-off is possible: The more

key-frames are available to test hypothesesiar the more clearly demonstrates the impact and validity of our analysi

the right hypothesis distinguishes itself from all otheks.

a matter of fact, the most extreme trade-off is simply trying
all 28 possible values fok, (without even ranking them), ~ We would like to thank Sylvain Munaut from the Osmo-
which reduces the required amount of known keystream t§0MGMR project [31] for verifying the reconstructed A5-

about 400-500 bits but increases the computational com3MR-1 cipher with real-world data.
plexity to This work has been supported by the Ministry of Eco-

(7-25.28)/2 ~ 218 nomic Affairs and Energy of the State of North Rhine-
Westphalia (Grant IV.5-43-02/2-005-WFBO-009).
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sub_20000000:
20000000 LINK 0x18

x-refs 204f e02c

20000004 [--SP] = (R7:6, P5:3);

20000006 P5 = R1;

20000008 P4 = RO

2000000a PO.L = 0x2034; [+ P0=0x00002034 */
2000000e PO. H = 0x2046; /* @P0=hex: 0x00000001 =*/
20000012 R2.L = 0x7410; [+ R2=0x00007410 */
20000016 R2.H = 0x2054; [+ @R2=str:’ pDecTenpQ’ =/
2000001a SP += -0x24;

2000001c RO = 0x4a8 (X); / * RO=0x000004a8 */
20000020 R1 = B[PO] (2);

20000022 [SP + Oxc] = PO;

20000024 P1.L = 0x6010; [+ P1=0x00006010 */
20000028 P1.H = 0xc000; [+ P1=0xc0006010 */

2000002¢ CALL (P1);

2000002e P3 = RO;

20000030 CC = RO == 0XO;
20000032 RO = Ox1 (X);
20000034 | F CC JUMP 0x2000015c;

Only Cryptanalysis of GSM encrypted communication,” in | oc_2000015c: x-refs 20000034

International Crytology Conference (CRYPT003, pp.
600-616.

ETSI, ETSI TS 101 376-5-3 V1.2.1 (2002-04); GEO-Mobile
Radio Interface Specifications; Part 5: Radio interface gihy
cal layer specifications; Sub-part 3: Channel Coding; GMR-1
05.003 Std., 2002.

2000015c SP += 0x24;
2000015e (R7:6, P5:3)
20000160 UNLI NK;
20000164 RTS;

= [ SP++];

Figure 11. Example for disassembly of Blackfin code



Figure 11 shows an excerpt from the output of our
Blackfin disassembler. As can be seen, cross-references
(i.e., who calls a function or where a jump originates)
are annotated. Additionally, if a register is loaded with
an address which points to a memory location which is
within the firmware image, the disassembler also reads and
interprets the respective data.

B. DSP Code of Feedback Register Shift Subroutine

ROM 1D038 updat e_r eg3:

ROM 1D038 nov dbl (*abs16(#reg3)), ACl
ROM 1D03D  sftl ACl, #-1, AC2

ROM 1D040 nmov dbl (*abs16(#reg3)), ACl
ROM 1D045 xor AC2, ACl

ROM 1D047 bf xtr #0FFFOh, ACl, ARl

ROM 1D04B  and #1, ARl, AC3

ROM 1D04E  and #1, ACl, ACl

ROM 1D051  xor AC3, ACl

ROM 1D053 xor ACO, ACl

ROM 1D055  sftl ACl, #22, ACO

ROM 1D058  xor AC2, ACO

ROM 1DO5A  nov ACO, dbl (*abs16(#reg3))

ROM 1DO5F ret

Figure 12. DSP code of a feedback register shift subroutine

Figure 12 depicts the TMS320C55x DSP code of one of
the feedback register shift subroutines. Note that theaaubr
tine and variable names were inserted by us afterwards and
are not present in the binary.



