Organizational Meeting
Seminar: Practical Cryptographic Systems

Dr. Aniket Kate
Cryptographic Systems (CrypSys) Research Group
MMCI, Saarland University
http://crypsys.mmci.uni-saarland.de
Student Registration

✓ Checking with the Confirmed Students
Organizational Details
Organizational Details

Instructor: Dr. Aniket Kate
Teaching Assistant: Tim Ruffing
Time: Friday 10:15 to 12:00
Place: E1 7 Seminar Room 3.23
Webpage: http://crypsys.mmci.uni-saarland.de/courses/pcs-seminar14/index.html
Contact: pcs2014@mmci.uni-saarland.de
Credit Points: 7 CP [+ 6 CP]
Organizational Details

Instructor: Dr. Aniket Kate
Teaching Assistant: Tim Ruffing
Time: Friday 10:15 to 12:00
Place: E1 7 Seminar Room 3.23
Webpage: http://crypsys.mmci.uni-saarland.de/courses/pcs-seminar14/index.html
Contact: pcs2014@mmci.uni-saarland.de
Credit Points: 7 CP [+ 6 CP]
Grading

<table>
<thead>
<tr>
<th>Task</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper Presentation</td>
<td>40%</td>
</tr>
<tr>
<td>Paper Reviews</td>
<td>15%</td>
</tr>
<tr>
<td>Class Participation</td>
<td>10%</td>
</tr>
<tr>
<td>Course Project</td>
<td>35%</td>
</tr>
</tbody>
</table>
Grading: Paper Presentation

✓ Suggest four papers by Sunday night
✓ Give a 30-minute presentation for your selected paper
 - The schedule will be available early next week
Grading: Paper Reviews

✓ Write reviews for five pre-assigned papers
✓ Review = Summary + Critics
 + Future directions
Grading: Class Participation

✓ Actively participate in class discussions
Grading: Course Project

✓ A research/development project on some topic related to cryptographic systems

✓ Ideal group size: two, but adjustable

✓ Two steps:
 - Proposal presentation
 - Report Submission
✓ Earn bonus points by performing better than expected in
 - class discussions,
 - your paper-reviews or
 - your project.
Course Basics

✓ Goal: To study (and attack) the cryptographic systems used in our daily life

✓ Topics Considered:
 - Crypto Currencies
 - Social and Payment Networks
 - Anonymity Networks and Censorship Evasion
 - Digital Certificate Infrastructures
 - Randomness
 - Cloud Security
 - Crypto Implementations
Course Topics

✓ Crypto-currencies:

- Bitcoin: A Peer-to-Peer Electronic Cash System
- A Fistful of Bitcoins: Characterizing Payments Among Men with No Names
- Zerocoin: Anonymous Distributed E-Cash from Bitcoin
- Secure Multiparty Computations on Bitcoin
Social and Payment Networks

- Social Networking with Frientegrity: Privacy and Integrity with an Untrusted Provider
- Bazaar: Strengthening User Reputations in Online Marketplaces
Course Topics

✓ Anonymity Networks and Censorship Evasion:

- Trawling for Tor Hidden Services: Detection, Measurement, Deanonymization
- Elligator: Elliptic-curve Points Indistinguishable from Uniform Random Strings
- Protocol Misidentification Made Easy with Format-Transforming Encryption
Course Topics

✓ Certificate Infrastructures:

- Web PKI: Closing the Gap between Guidelines and Practices
- SoK: SSL and HTTPS: Revisiting Past Challenges and Evaluating Certificate Trust Model Enhancements
- Certificate Transparency
- Enhanced Certificate Transparency and End-to-End Encrypted Mail
- Macaroons: Cookies with Contextual Caveats for Decentralized Authorization in the Cloud
Course Topics

✓ Randomness:

- Security Analysis of Pseudo-Random Number Generators with Input: /dev/random is not Robust
- Ensuring High-Quality Randomness in Cryptographic Key Generation
Course Topics

✓ Cloud Security:

- Pinocchio: Nearly Practical Verifiable Computation
- Blind Seer: A Scalable Private DBMS
Course Topics

✓ Cryptographic Implementations:

- CryptDB: Protecting Confidentiality with Encrypted Query Processing
- Verifiable Auctions for Online Ad Exchanges
- Lattice Cryptography for the Internet
Background Preparation

✓ Some background in cryptography, security, or privacy is expected

✓ Contact us early enough if you have not done background courses
Student Introductions
Thanks!

Aniket Kate
http://crypsys.mmci.uni-saarland.de/