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Abstract—Starting with Dining Cryptographers networks
(DC-nets), several peer-to-peer (P2P) anonymous communication
protocols have been proposed. However, despite their strong
anonymity guarantees, none of them have been employed in
practice so far: Most protocols fail to simultaneously address
the crucial problems of slot collisions and disruption by mali-
cious peers, while the remaining ones handle f malicious peers
with O(f2) communication rounds. We conceptualize these P2P
anonymous communication protocols as P2P mixing, and present
a novel P2P mixing protocol, DiceMix, that needs only four
communication rounds in the best case, and 4 + 2f rounds
in the worst case with f malicious peers. As every individual
malicious peer can force a restart of a P2P mixing protocol by
simply omitting his messages, we find DiceMix with its worst-case
complexity of O(f) rounds to be an optimal P2P mixing solution.

On the application side, we employ DiceMix to improve
anonymity in crypto-currencies such as Bitcoin. The public
verifiability of their pseudonymous transactions through publicly
available ledgers (or blockchains) makes these systems highly
vulnerable to a variety of linkability and deanonymization attacks.
We use DiceMix to define CoinShuffle++, a coin mixing protocol
that enables pseudonymous peers to perform unlinkable trans-
actions in a manner fully compatible with the current Bitcoin
system. Moreover, we demonstrate the efficiency of our proto-
cols with a proof-of-concept implementation. In our evaluation,
DiceMix requires less than eight seconds to mix 50 messages
(160 bits, i.e., Bitcoin addresses), while the best protocol in the
literature requires almost three minutes in the same setting.

Finally, we present a deanonymization attack on existing P2P
mixing protocols that guarantee termination in the presence of
disruptive peers. We generalize the attack to demonstrate that
no P2P mixing protocol simultaneously supports arbitrary input
messages, provides anonymity, and terminates in the presence of
disruptive peers. DiceMix resists this attack by requiring fresh
input messages, e.g., cryptographic keys never used before.

I. INTRODUCTION

Chaum [19] introduced the concept of anonymous digital
communication in the form of mixing networks (or mixnets). In
the mixnet protocol, a batch of encrypted messages from users
is decrypted, randomly permuted, and relayed by a sequence of
routers to avoid individual messages getting traced through the
network. The original mixnet protocol, as well as its successors
such as onion routing [32], AN.ON [1], and Tor [24], inherently
require access to a set of geographically distributed routers
such that at least some of them are trusted to not break peers’
anonymity.

∗ This is a draft (revision 2017-01-12); the most recent revision is available
at https://crypsys.mmci.uni-saarland.de/projects/FastDC/.

Starting with the Dining Cryptographers network (DC-
net) protocol [18], another line of research on anonymous
communication networks emerged, in which peers do not
depend on any third-party routers and instead communicate
with each other to send their messages anonymously. While
the DC-net protocol can guarantee successful termination and
anonymity against an honest-but-curious adversary controlling
a subset of peers, it is prone to disruption by a single malicious
peer who sends invalid protocol messages (active disruption),
or simply omits protocol messages entirely (passive disruption).
Moreover, a DC-net protects the anonymity of the involved
malicious peers, making it impossible for honest peers to detect
and exclude the malicious peer.

To address this termination issue, recent successors of the
DC-net protocol [16], [23], [28], [29], [33], [56] incorporate
cryptographic accountability mechanisms against active disrup-
tions. The employed techniques are either proactive, e.g., zero-
knowledge proofs proving the validity of sent messages [33],
or reactive, e.g, the revelation of session secrets to expose and
exclude malicious disruptors after a failed protocol run [23].
These protocols have demonstrated that, for a set of mutually
distrusting peers, sending their messages anonymously is
feasible purely by communicating with each other in a peer-
to-peer (P2P) manner. Moreover, given the surging demand
for anonymity in P2P crypto-currencies such as Bitcoin [5],
[6], [41], [46], [47], [52], [54], these protocols have led to
real-world P2P Bitcoin mixing systems [3], [43], [53].

Nevertheless, these solutions are still not ideal: with
communication rounds quadratic in the worst case with many
malicious peers, these current pure P2P solutions [23], [53],
[56] do not scale as the number of participating peers grows.
For instance, the state-of-the-art Bitcoin P2P mixing protocol
CoinShuffle [53] requires a few minutes to anonymize the
communication of 50 peers if every peer is honest, and even
much longer in the presence of malicious peers. In this paper,
it is our goal to bring P2P anonymous communication from
the realm of feasibility to the realm of practicality.

A. Contributions

We compartmentalize our contributions in this paper into
four key components.

1) P2P Mixing: As our first contribution, we conceptualize
P2P mixing as a natural generalization of DC-nets [18]. A P2P
mixing protocol enables a set of mutually distrusting peers
to publish their messages simultaneously and anonymously
without requiring any trusted or untrusted third-party anonymity
proxy.
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2) DiceMix Protocol: Although some DC-net succes-
sors [31], [42] as well as some anonymous group messaging
systems [23], [53], [56] satisfy the P2P mixing requirements,
we found those to be too inefficient for large-scale mixing.
As our second contribution, we present the new P2P mixing
protocol DiceMix, which builds on the original DC-net protocol.
P2P Mixing Protocol handles collisions by redundancy, and
disruption by revealing session secrets to expose malicious
peers. DiceMix requires only 4+2f rounds in the presence of f
malicious peers, i.e., only four rounds if every peer behaves hon-
estly. The resulting communication round complexity is a linear
factor better than in existing state-of-the-art approaches [23],
[31], [42], [53].

We provide a proof-of-concept implementation of the
DiceMix protocol, and evaluate it in Emulab [60]. Our results
show that in an Internet-like setting, 50 peers can anonymously
broadcast their messages in about eight seconds, whereas
previous state-of-the art protocols need several minutes.

3) CoinShuffle++ Protocol: As our third contribution, we
apply DiceMix to Bitcoin, the most popular crypto-currency.
In particular, building on the CoinJoin paradigm [44] and
DiceMix, we present CoinShuffle++, a practical decentralized
mixing protocol for Bitcoin users. CoinShuffle++ not only is
considerably simpler and thus easier to implement than its
predecessor CoinShuffle [53] but also inherits the efficiency
of DiceMix and thus outperforms CoinShuffle significantly.
In particular, in a scenario with 50 participants in the same
evaluation setting, a successful transaction with CoinShuffle++
can be created in eight seconds, instead of the almost three
minutes required with CoinShuffle.

4) A Generic Attack on P2P Mixing Protocols: As our
fourth contribution, we present a deanonymization attack on
existing P2P mixing protocols that guarantee termination in the
presence of disruptive peers. We exemplify the attack on the
Dissent shuffle protocol [23], [56] and then generalize the attack
to demonstrate that no P2P mixing protocol simultaneously
supports arbitrary input messages, provides anonymity, and
terminates in the presence of disruptive peers.

The proposed attack is similar to statistical disclosure attacks
across several protocol runs (e.g., [15], [62]) but works with
certainty, because a protocol, which is supposed to terminate
successfully, can be forced to start a new run to ensure
termination. Finally, we discuss how DiceMix resists this attack
by requiring fresh input messages (e.g., cryptographic keys
never used before), and we discuss why this is not a problem
for applications such as coin mixing.

II. CONCEPTUALIZING P2P MIXING

A P2P mixing protocol [23], [53], [63] allows a group
of mutually distrusting peers, each having an input message,
to simultaneously broadcast their messages in an anonymous
manner without the help of a third-party anonymity proxy. An
attacker controlling the network and some peers should not be
able to tell which of the messages belongs to which honest
peer. In more detail, the anonymity set of an individual honest
peer should be the set of all honest participating peers, and we
expect the size of this set to be at least two.

The requirement to achieve sender anonymity without the
help of any third-party anonymity proxy such as an onion

router or a mix server makes P2P mixing fundamentally
different from most well-known anonymous communication
techniques in the literature. Unlike standard techniques such
as onion routing or mix cascades, P2P mixing relies on a
much weaker trust assumption and is expected to terminate
successfully and provide a meaningful anonymity guarantee
in the presence of an attacker controlling all but two peers.
As a consequence, each peer must be actively involved in the
anonymous communication process which comes with inherent
restrictions and expense.

A. Setup and Communication Model

We assume that peers are connected via a bulletin board, e.g.,
a server receiving messages from each peer and broadcasting
them to all other peers. We stress that sender anonymity will
be required to hold even against a malicious bulletin board;
the bulletin board is purely a matter of communication.

We assume the bounded synchronous communication set-
ting, where time is divided into fixed communication rounds
such that all messages broadcast by a peer in a round are
available to the peers by the end of the same round, and
absence of a message on the bulletin board indicates that the
peer in question failed to send a message during the round.

Such a bulletin board can be seamlessly deployed in practice,
and in fact already-deployed Internet Relay Chat (IRC) servers
suffice.1 The bulletin board can alternatively be substituted by
an (early stopping) reliable broadcast protocol [25], [55] if one
is willing to accept the increased communication cost.

We assume that all peers participating in a P2P mixing
protocol are identified by verification keys of a digital signature
scheme, and that the peers know each other’s verification keys
at the beginning of a protocol execution.

To find other peers willing to mix messages, a suitable
bootstrapping mechanism is necessary. Note that a malicious
bootstrapping mechanism may hinder sender anonymity by
preventing honest peers from participating in the protocol and
thereby forcing a victim peer to run the P2P mixing protocol
with no or only a few honest peers, decreasing the size of
her effective anonymity set. While this is a realistic threat
against any anonymous communication protocol in general,
we consider protection against a malicious bootstrapping
mechanism orthogonal to our work.

B. Input and Outputs of a P2P Mixing Protocol

Our treatment of a P2P mixing protocol is special with
respect to inputs and outputs. Regarding inputs (the messages
to mix), allowing the adversary to control all but two peers
introduces an unexpected requirement, namely, that input
messages must be fresh. Regarding outputs, a P2P mixing
protocol according to our definitions provides the feature that
the peers will have to explicitly agree on the protocol output,
i.e., the set of anonymized messages.

1 Servers supporting IRC version 3.2 are capable of adding a server timestamp
to every message [40]; this can ensure that peers agree whether a certain
message arrived in time.

2



1) Freshness of Input Messages: In contrast to state-of-the-
art anonymous and terminating P2P mixing protocols such as
Dissent [23] and the protocol by Golle and Juels [33], we
require that input messages to be mixed are freshly drawn from
a distribution with sufficient entropy, e.g., input messages can be
random bitstrings or public keys never used before. Furthermore,
if the honest peers exclude a peer from the protocol, e.g.,
because the peer appears offline, all messages used so far will
be discarded. Then, all remaining peers again generate fresh
messages and are required to continue the protocol with them.

While this seems to be a severe restriction of functionality
compared to the aforementioned protocols, a restriction of this
kind is in fact necessary to guarantee anonymity. If instead
peers can arbitrarily choose their messages in a P2P mixing
protocol guaranteeing termination, the protocol is inherently
vulnerable to an attack breaking sender anonymity. We will
explain this attack in detail in Section VIII; it works against
state-of-the-art P2P mixing protocols and has been overlooked
in this form in the literature so far.

2) Explicit Confirmation of the Output: Anonymity-seeking
P2P applications such as coin mixing [44], [53], [63] or identity
mixing [27] require that the peers agree explicitly on the
outcome of the mixing before it comes into effect, e.g., by
collectively signing the set M of anonymized messages.

We call this additional functionality confirmation and
incorporate it in our model. The form of the confirmation
depends on the application and is left to be defined by the
application which calls the protocol. For example in coin
mixing, the confirmation is a special transaction signed by
all peers; we will discuss this in detail in Section VI.

While the protocol cannot force malicious peers to confirm
M , those malicious peers should be excluded and the protocol
should finally terminate successfully with a proper confirmation
by all unexcluded peers.

C. Interface and Execution Model

To deploy a P2P mixing protocol in various anonymity-
seeking applications, our generic definition leaves it up to the
application to specify exactly how fresh input messages are
obtained and how the confirmation on the result is performed.
We restrict our discussion here to terminology and a syntactic
description of the interface between the anonymity-seeking
application and an employed P2P mixing protocol, and leave
the semantic requirements to the protocol construction later.

A protocol instance consists of one or several runs, each
started by calling the user-defined algorithm GEN() to obtain
a fresh input message to be mixed. If a run is disrupted, the
protocol can exclude peers that turned out to be malicious.
Otherwise, the protocol will obtain a candidate result, i.e., a
candidate output set M of anonymized messages. Then it calls
the user-defined confirmation subprotocol CONFIRM(i, P,M),
whose task is to obtain confirmation for M from the final
peer set P of all unexcluded peers. (The first argument i is
an identifier of the run.) Possible confirmations range from
a signature on M , to a complex task requiring interaction
among the peers, e.g., the creation of a threshold signature in
a distributed fashion.

If confirmation can be obtained from everybody, then
the run and the P2P mixing protocol terminates successfully.
Otherwise, CONFIRM(i, P,M) by convention fails and reports
the malicious peers deviating from the confirmation steps back
to the P2P mixing protocol. In this case, the protocol can start a
new run by obtaining a fresh message via GEN(); the malicious
peers are excluded in this new run.

An example execution is depicted in Fig. 1. Note that
while in this example execution all runs are sequential, this
is not a requirement. For improved efficiency, a P2P mixing
protocol can perform several runs concurrently, e.g., to have
an already-started second run in reserve in case the first fails.
Then the protocol can terminate with the first run that confirms
successfully, and abort all other runs.

D. Threat Model

In general, we assume that the attacker controls some
number f of n peers.

For the sender anonymity property, we assume that the
attacker additionally controls the bulletin board, i.e., the
network. In particular, the attacker can partition the network
and block messages from honest peers. In the case of successful
termination, the anonymity set of each honest peer will be the
set of unexcluded honest peers2. This means that we need
f < n− 1 at the end of the protocol, where n is the number
of unexcluded peers, to ensure that at least two honest peers
are present and the anonymity guarantee is meaningful.

For the termination property, we trust the bulletin board to
relay messages reliably and honestly, because termination (or
any liveness property) is impossible to achieve against a mali-
cious bulletin board, which can just block all communication.

E. Security Goals

A P2P mixing protocol must provide two security properties.

a) Sender Anonymity: If the protocol succeeds for
honest peer p in a run (as described in Section II-C) with
message mp and final peer set P , and p′ ∈ P is another honest
peer, then the attacker cannot distinguish whether message mp

belongs to p or to p′.

b) Termination: If the bulletin board is honest and there
are at least two honest peers, the protocol eventually terminates
successfully for every honest peer.

Our definition of sender anonymity is only concerned
with the messages in a successful run, i.e., no anonymity
is guaranteed for messages discarded in failed runs (see
Section II-C). This demands explanation, because giving up
anonymity in the case of failed confirmation seems to put
privacy at risk at first glance. However, the discarded messages
are just randomly generated bitstrings and have never been
and will never be used outside the P2P mixing protocol; in
particular the messages have been not returned back to the
application. So it is safe to give up sender anonymity for
discarded messages. It turns out that this permissive definition
is sufficient for a variety of applications and allows for very
efficient constructions.

2A honest peer might appear offline due to the attacker blocking network
messages. Such a peer can be excluded to allow the remaining peers to proceed.
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Application

P2P Mixing Protocol

GEN() CONFIRM(2, P2 
, M2) CONFIRM(3, P3 

, M3)GEN() GEN()

Run 1 Run 2 Run 3

P2 
, M2 P3 

, M3

P3 
, M3

m1 m2 m3

P1

Pmal,3 = ∅Pmal,2 ≠ ∅

Fig. 1: Example Execution of a P2P Mixing Protocol. The figure shows the calls during the execution; time proceeds from left
to right. The execution starts with the application calling the P2P mixing protocol with an initial set P1 of peers. The P2P mixing
protocol then starts Run 1 by generating a new message m1 (via calling GEN()). Run 1 fails early (e.g., due to active disruption
by a peer p) and m1 is discarded. The P2P mixing protocol then starts Run 2 with peer set P2 = P1 \ {p} by generating a new
message m2. Run 2 is initially not disrupted, and the P2P mixing protocol calls the confirmation subprotocol to confirm the set
M2 of mixed messages with the peers in P2. The confirmation subprotocol fails, because a set Pmal,2 of peers refuse to confirm.
The confirmation subprotocol reports those malicious peers back to the P2P mixing protocol, which in turn discards m2. The P2P
mixing protocol then starts Run 3 with peer set P3 = P2 \ Pmal,2. This time, the confirmation subprotocol succeeds and indicates
this by returning an empty set (of malicious peers) to the P2P mixing protocol. That is, all peers in P3 have confirmed that the set
M3 of anonymized messages is the final output. The P2P mixing protocol returns P3 and M3 to the application and terminates.

III. SOLUTION OVERVIEW

Our core tool to design an efficient P2P mixing protocol
is a Dining Cryptographers network (DC-net) [18]: Suppose
that each pair of peers (i, j) shares a symmetric key ki,j and
that one of the peers (e.g., p1) wishes to anonymously publish
a message m such that |m| = |ki,j |. For that, p1 publishes
M1 ··= m ⊕ k1,2 ⊕ k1,3, p2 publishes M2 ··= k1,2 ⊕ k2,3 and
finally p3 publishes M3 ··= k1,3 ⊕ k2,3. Now, the peers (and
observers) can compute M1⊕M2⊕M3, effectively recovering
m. However, the origin of the message m is hidden: without
knowing the secrets ki,j , no observer can determine which peer
published m. Additionally, the origin is also hidden for peers
themselves (e.g., as p2 does not know k1,3, she cannot discover
whether p1 or p3 is the origin of the message). It is easy to
extend this basic protocol to more users [33].

Besides the need for pairwise symmetric keys, which can
be overcome by a key exchange mechanism, there are two
key issues to overcome, namely, first making it possible that
all peers can publish a message simultaneously, and second,
ensuring termination of the protocol even in the presence of
malicious disruptors, while preserving anonymity.

A. Handling Collisions

Each peer p ∈ P in the mixing seeks to anonymously
publish her own message mp. Naively, they could run |P |
instances (called slots) of a DC-net, where each peer randomly
selects one slot to publish her message. However, even if all
peers are honest, two peers can choose the same slot with high
probability, and their messages are then unrecoverable [33].

One proposed solution is to perform an anonymous reser-
vation mechanism so that peers agree in advance on a slot
assignment for publishing [31], [42]. However, this mechanism
adds communication rounds among the peers and it must also
provide anonymity, which typically makes it prone to the same

issues (e.g., slot collisions) that we would like to overcome in
the first place. Alternatively, it is possible to establish many
more slots so that the probability of a collision decreases [22].
However, this becomes inefficient quickly, and two honest peers
could still collide with some probability.

Instead, we follow the paradigm of handling collisions by
redundancy [16], [20], [26], [39], [51]. Assume that messages
to be mixed are encoded as elements of a finite field F with
|F| > n, where n is the number of peers. Given n slots, each
peer i, with message mi, publishes mj

i (i.e., mi to the j-th
power) in the j-th slot. This yields an intentional collision
involving all peers in each of the slots. Using addition in
F instead of XOR to create DC-net messages, the j-th slot
contains the power sum Sj =

∑
im

j
i .

Now, we require a mechanism to extract the messages mj

from the power sums Sj . Let g(x) = anx
n + an−1x

n−1 +
. . . + a1x + a0 be a polynomial with roots m1,m2, . . . ,mn.
Newton’s identities [34] state

an = 1,

an−1 = S1,

an−2 = (an−1S1 − S2)/2,

an−3 = (an−2S1 − an−1S2 + S3)/3,

...

By knowledge of all coefficients aj of the polynomial g, we
can find its n roots, which are the n input messages.

B. Handling Disruption and Ensuring Termination

Recovering the messages only works when all peers honestly
follow the protocol. If a malicious peer disrupts the DC-net by
simply using inconsistent DC-net messages, we must ensure
that the protocol still terminates eventually.
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When a candidate set M is determined, every honest peer
checks whether her input message is indeed in M . Depending
on the outcome of this check, the peer either starts the
confirmation subprotocol to confirm a good M , or reveals
the secret key used in the key exchange to determine who is
responsible for an incorrect M . We face two challenges on the
way to successful termination.

1) Consistent Detection of Disruption: The first challenge is
to ensure that indeed M does not contain any honest message.
Only then will all honest peers agree on whether disruption has
occurred and are able to take the same control flow decision
at this stage of the protocol, which is crucial for termination.

To overcome this challenge, every peer must provide a
non-malleable commitment (e.g., using a hash function) to its
DC-net vector before she sees the vectors of other peers. In
this manner, malicious peers are forced to create their DC-net
vectors independently of the input messages of honest peers.
The redundant encoding of messages using powers ensures that
a malicious peer is not able to create a malformed DC-net vector
that results in a distortion of only a subset of the messages of
the honest peers. Intuitively, to distort some messages but keep
some other message m of a honest peer intact, the malicious
peer must influence all power sums consistently. This, however,
would require a DC-net vector that depends on m (as we show
in Section IV-D), which is prevented by the non-malleability of
the commitments. This ensures that all honest peers agree on
whether M is correct, and take the same control flow decision.

2) Exposing a Disruptor: The second challenge is that the
misbehaving peer is not trivially detected given the sender
anonymity property of DC-nets. To overcome this, every peer
is required to reveal the ephemeral secret key used in the
initial key exchange. Then every peer can replay the steps
done by every other peer and eventually detect and expel the
misbehaving peer from further runs.

Note that the revelation of the secret keys clearly breaks
sender anonymity for the current run of the protocol. However,
the failed run will be discarded and a new run with fresh
cryptographic keys and fresh messages will be started without
the misbehaving peer. This is in line with our definition of
sender anonymity, which does not impose a requirement on
failed runs.

An important guarantee provided by DiceMix is that if a
protocol run fails, the honest peers agree on the set of malicious
peers to be excluded. Although this is critical for termination,
this aspect has not been properly formalized or addressed
in some previous P2P mixing protocols supposed to ensure
termination [23], [53], [56].

IV. THE DICEMIX PROTOCOL

In this section we present DiceMix, an efficient P2P mixing
protocol, which terminates in only 4+2f rounds in the presence
of f malicious peers.

A. Building Blocks

1) Digital Signatures: We require a digital signature scheme
(KeyGen, Sign, Verify) unforgeable under chosen-message
attacks (UF-CMA). The algorithm KeyGen returns a private
signing key sk and the corresponding public verification key

vk . On input message m, Sign(sk ,m) returns σ, a signature
on message m using signing key sk . The verification algorithm
Verify(pk , σ,m) outputs true iff σ is a valid signature for m
under the verification key vk .

2) Non-interactive Key Exchange: We require a non-in-
teractive key exchange (NIKE) mechanism (NIKE.KeyGen,
NIKE.SharedKey) secure in the CKS model [17], [30].
The algorithm NIKE.KeyGen(id) outputs a public key npk
and a secret key nsk for a given party identifier id .
NIKE.SharedKey(id1, id2,nsk1,npk2, sid) outputs a shared
key for the two parties id1 and id2 and session identifier sid .
NIKE.SharedKey must fulfill the standard correctness require-
ment that for all session identifiers sid , all parties id1, id2, and
all corresponding key pairs (npk1,nsk1) and (npk2,nsk2),
it holds that NIKE.SharedKey(id1, id2,nsk1,npk2, sid) =
NIKE.SharedKey(id2, id1,nsk2,npk1, sid). Additionally, we
require an algorithm NIKE.ValidatePK(npk), which outputs
true iff npk is a public key in the output space of NIKE.KeyGen,
and we require an algorithm NIKE.ValidateKeyPair(npk ,nsk)
which outputs true iff nsk is a valid secret key for the public
key npk .

Static Diffie-Hellman key exchange satifies these require-
ments [17], given a suitable key derivation algorithm such as
NIKE.SharedKey(id1, id2, x, g

y) ··= K((gxy, {id1, id2}, sid))
for a hash function K modeled as a random oracle.

3) Hash Functions: We require two hash functions H and
G both modeled as a random oracle.

4) Conventions and Notation for the Pseudocode: We use
arrays written as ARR[i], where i is the index. We denote the
full array (all its elements) as ARR[ ].

A protocol message msg is broadcast using the instruction
“broadcast m”. The instruction “receive ARR[p] from all p ∈
P where X(ARR[p]) missing C(Poff)” attempts to receive a
message from all peers p ∈ P . The first message msg from
peer p that fulfills predicate X(msg) is accepted and stored as
ARR[p]; all other messages from p are ignored. When a timeout
is reached, the command C is executed, which has access to a
set Poff ⊆ P of peers that have not sent a (valid) message.

Regarding concurrency, a thread t that runs a procedure
P(args) is started using “t ··= fork P(args)”. A thread with
handle t can either be joined using “r ··= join t”, where r is
its return value, or it can be aborted using “abort t”. A thread
can wait for a notification and receive a value from another
thread using “wait”. The notifying thread uses “notify t of v”
to wake up thread t and notify it of value v.

B. Contract with the Application

In the following, we specify the contract between DiceMix
and the application calling it. We start with two guarantees
provided by DiceMix to the application and then we describe
features required of the application by DiceMix.

1) Guarantees Provided to the Application: The confirma-
tion subprotocol is provided with two guarantees. First, DiceMix
ensures that all honest peers call the confirmation subprotocol
in the same communication round with the same parameters;
we call this property agreement.
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Runs Communication rounds

1 KE CM DC SK

2 KE CM
RV
DC

CF

3 KE CM
RV
DC

CF

4 KE CM

Fig. 2: Example of a DiceMix Execution. Run 1 fails due
to DC-net disruption. Run 2 fails to confirm. Run 3 finally
succeeds, and run 4 is then aborted. Rows represent protocol
runs and columns represent communication rounds. Blue parts
are for concurrency; the arrows depict the dependency between
runs, i.e., when a run notifies the next run about the peers to
exclude. KE: Key exchange; CM: Commitment; DC: DC-net;
RV: Reveal pads; SK: Reveal secret key; CF: Confirmation.

Second, to ensure that no peer refuses confirmation for
a legitimate reason, e.g., an incorrect set final set M not
containing her message, our protocol ensures that all honest
peers deliver the same and correct message set M . Then,
the confirmation subprotocol CONFIRM(i, P,M) can safely
assume that peers refusing to confirm are malicious. We call
this property validity.

The purpose of both of these guarantees is to ensure
correct functionality of the confirmation subprotocol, and the
guarantees are only provided if the bulletin board is honest. As
a consequence, it is up to the confirmation subprotocol to fail
safely if they do not hold. The guarantees are detailed below.

a) Agreement: Assume that the bulletin board is honest.
Let p and p′ be two honest peers in a protocol execution. If
p calls CONFIRM(i, P,M)3 in some communication round r,
then p′ calls CONFIRM(i, P,M) with the same message set M
and final peer set P in the same communication round r.

b) Validity: Assume that the bulletin board is honest.
If honest peer p calls CONFIRM(i, P,M) with message set M
and final peer set P , then (i) for all honest peers p′ and their
messages mp′ , we have mp′ ∈M , and (ii) we have |M | ≤ |P |.

2) Requirements of the Application: Next, we specify the
guarantees that the application must provide to DiceMix to
ensure proper function.

We assume that input messages generated by GEN() are
encoded in a prime field Fq , where q is larger than the number
of peers in the protocol. Also, we assume that the message m
returned by GEN() has sufficient entropy such that it can be
predicted only with negligible probability, which also implies
that q is at least as large as the security parameter.

We require two natural properties from the confirmation
subprotocol. The first property (correct confirmation) states that
a successful call to the subprotocol indeed confirms that the
honest peers in P agree on M . The second property (correct
exclusion) states that in an unsuccessful call, the confirmation

3CONFIRM() will actually take more arguments, but they are not relevant
for this subsection.

subprotocol identifies at least one malicious peer, and no honest
peer is falsely identified as a malicious peer.

a) Correct Confirmation: Even if the bulletin board
is malicious,4 we require the following: If a call to
CONFIRM(i, P,M) succeeds for peer p (i.e., if the call returns
an empty set Pmal = ∅ of malicious peers refusing confirmation),
then all honest peers in P have called CONFIRM(i, P,M).

b) Correct Exclusion: Assume that the bulletin is honest.
If CONFIRM(i, P,M) returns a set Pmal 6= ∅ for honest peer
p, then CONFIRM(i, P,M) returns the same set Pmal for every
honest peer p′. Furthermore, the returned set Pmal does not
contain honest peers.

C. Protocol Description

We describe the DiceMix protocol in Algorithm 1. The
black code is the basic part of the protocol; the blue code
handles concurrent runs and offline peers.

1) Single Run of the Protocol (Black Pseudocode): The
protocol starts in DICEMIX(), which takes as input a set of
other peers P , the peer’s own identity my, an array VK[ ] of
verification keys of all peers, the peer’s own signing key sk ,
and a predetermined unique session identifier sid . A single
protocol run, implemented in RUN(), consists of four rounds.

In the first round (KE), the NIKE is used to establish
pairwise symmetric keys between all peers (DC-KEYS()). Then
each peer can derive the DC-net pads from these symmetric
keys (DC-SLOT-PAD()) and use them to create the vector of
messages for the DC-net (DC-MIX()). In the second round
(CM), each peer commits to her DC-net vector using hash
function H; adding randomness is not necessary, because we
assume that the input messages contained in the DC-net vector
have sufficient entropy. In the third round (DC), the peers open
their commitments. They are non-malleable and their purpose
is to prevent a rushing attacker from letting his DC-net vector
depend on messages by honest peers, which will be crucial for
the agreement property. After opening the commitments, every
peer has enough information to solve the DC-net and extract the
list of messages by solving the power sums (DC-MIX-RES()).

Finally, every peer checks whether her input message is
in the result of the DC-net, determining how to proceed in
the fourth round. Agreement will ensure that either every peer
finds her message or no honest peer finds it.

If a peer finds her message, she proceeds to the confirmation
subprotocol (CF). Otherwise, she outputs her secret key. In this
case, every other peer publishes her secret key as well, and the
peers can replay each other’s protocol messages for the current
run. This will expose the misbehaving peer, and honest peers
will exclude him from the next run (SK).

2) Concurrent Runs of the Protocol (Blue Pseudocode): A
simple but inefficient way of having several runs is to start a
single run of the protocol and only after misbehavior is detected,

4This property puts forth a requirement on a successful call of the
confirmation subprotocol. Such a successful call will result in a successful run
and ultimately in a successful termination of the whole P2P mixing protocol,
which implies that the messages are not discarded and sender anonymity is
required for this run. So this property is crucial for sender anonymity and thus
we must assume that it holds even if the bulletin board is malicious.
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start a new run without the misbehaving peer. This approach
requires 4 + 4f rounds, where f is the number of disruptive
peers (assuming that CONFIRM() takes one round). To reduce
the number of communication rounds to 4 + 2f , we deploy
concurrent runs as depicted in Fig. 2. We need to address two
main challenges. First, when a peer disrupts the DC-net phase
of run i, it must be possible to patch the already-started run
i+ 1 to discard messages from misbehaving peers in run i. For
that, run i must reach the last round (SK or CF) before run
i+ 1 reaches the DC round.

Before its DC round, run i+ 1 can be patched as follows.
In the DC round of run i+ 1, honest peers broadcast not only
their DC-net messages, but also in parallel they reveal (RV)
the symmetric keys shared in run i+ 1 with malicious peers
detected in run i. In this manner, DC-net messages can be
partially unpadded, effectively excluding malicious peers from
run i+ 1. We note that a peer could reveal wrong symmetric
keys in this step. This, however, leads to wrong output from
the DC-net, which is then handled by revealing secret keys
in round i + 1. Publishing partial symmetric keys does not
compromise sender anonymity for unexcluded peers because
messages remain partially padded with symmetric keys shared
between the honest peers.

3) Handling Offline Peers (Blue Pseudocode): So far
we have only discussed how to ensure termination against
actively disruptive peers who send wrong messages. However,
a malicious peer can also just send no message at all. This
case is easy to handle in our protocol. If a peer p has not
provided a (valid) broadcast message to the bulletin board in
time, all honest peers will agree on that fact, and exclude the
unresponsive peer. In particular, it is easy to see that all criteria
specifying whether a message is valid will evaluate the same
for all honest peers (if the bulletin board is reliable, which we
assume for termination).

To be able to achieve termination 4 + 2f in communication
rounds, it is crucial that missing messages in the first two
broadcasts (KE and CM) do not require aborting the run. Luckily,
the current run can be continued in those cases. Peers not
sending KE are just ignored in the rest of the run; peers not
sending CM are handled by revealing symmetric keys exactly
as done with concurrent runs (see the code blocks starting with
the “missing” instruction).

D. Security and Correctness Analysis

In this section, we discuss why DiceMix achieves all
required properties, namely the security properties sender
anonymity and termination as well as the guarantees of validity
and agreement that the application may rely on.

1) Sender Anonymity: Consider a protocol execution in
which an honest peer p succeeds with message mp and final
peer set P , and let p′ ∈ P be another honest peer. We have to
argue that the attacker cannot distinguish whether mp belongs
to p or p′.

Since both p and p′ choose fresh messages mp, mp′ , and
fresh NIKE key pairs in each run, it suffices to consider
only the successful run i. Since p succeeds in run i, the
call to CONFIRM(i, P,M) has succeeded. By the “correct
confirmation” property of CONFIRM(), peer p′ has started

CONFIRM(i, P,M) in the same communication round as p.
By construction of the protocol, this implies two properties
about peer p′: (i) p′ will not reveal her secret key in round SK,
and (ii) p′ assumes that p is not excluded in run i, and thus
has not revealed the symmetric key shared with p in round RV.

As the key exchange scheme is secure in the CKS model and
the exchanged public keys are authenticated using unforgeable
signatures, the attacker cannot distinguish the pads derived
from the symmetric key between p and p′ from random pads.

Thus, after opening the commitments on the pads, peer
p has formed a proper DC-net with at least peer p′. The
security guarantee of Chaum’s original DC-nets [18] implies
that the attacker cannot distinguish mp from mp′ before the
call to CONFIRM(i, P,M). Now, observe that the execution of
subprotocol CONFIRM(i, P,M) does not help in distinguishing,
since all honest peers call it with the same arguments, which
follows by the “correct confirmation” property as we have
already argued. This shows sender anonymity.

2) Validity: To show validity, we have to show that if honest
peer p calls CONFIRM(i, P,M) with message set M and final
peer set P , then (i) for all honest peers p′ and their messages
mp′ , we have mp′ ∈M , and (ii) we have |M | ≤ |P |.

For part (i) of validity, recall that we assume the bulletin
board to be honest for validity, so every peer receives the same
broadcast messages. Under this assumption and the assumption
that the signature scheme is unforgeable, a code inspection
shows that after receiving the DC message, the entire state
of a protocol run i is the same for every honest peer, except
for the signing keys, the own identity my, and the message m
generated by GEN(). From these three items, only m influences
the further state and control flow, and it does so only in the
check m ∈M at the end of RUN() (Line 48 in Algorithm 1).

We now show as intermediate step that in every run i, the
condition m ∈M evaluates to true for all honest peers or false
for all honest peers. Note that M is entirely determined by
broadcast messages and thus the same for all honest peers. Let
p and p′ be two honest peers with their input messages mp and
mp′ in run i, and assume for contradiction that the condition
is true for p but not for p′, i.e., mp ∈M but mp′ /∈M . This
implies that at least one malicious peer a has committed to an
ill-formed DC-net vector in run i, i.e., a vector which is not of
the form (ma,m

2
a, . . . ,m

n
a) with n ≥ 3, because there is at the

least malicious peer a and two honest peers. Since mp ∈M ,
this ill-formed vector left the message mp intact. This implies
that the vector of a was chosen depending on the other DC-
net vectors. A simple algebraic argument shows that even for
the second power sum in the second slot, it is not feasible to
come up with an additive offset to the power sum that changes
some of the encoded messages but leaves all others intact: To
change mp′ to mp′+∆ and leave all other messages intact, the
correct offset for the first slot is ∆, and the correct offset for
the second slot is (mp′ + ∆)2 −m2

p′ = 2mp′∆ + ∆2, which
depends on mp′ for fixed ∆. However, it is not feasible for the
attacker to create one (or more) commitments on messages that
depend on mp′ , because the commitments are non-malleable
and mp′ cannot be predicted. This argument can be generalized
to changing exactly d messages for 1 ≤ d < n.
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Algorithm 1 DiceMix

1: proc DICEMIX(P,my, VK[ ], sk, sid )
2: sid ··= (sid , P, VK[ ])
3: if my ∈ P then
4: fail “cannot run protocol with myself”
5: return RUN(P,my, VK[ ], sk, sid , 0)
6: proc RUN(P,my, VK[ ], sk, sid , run)
7: if P = ∅ then
8: fail “no honest peers”
9: . Exchange pairwise keys

10: (NPK[my], NSK[my]) ··= NIKE.KeyGen(my)
11: sidHpre ··= H((sidHpre, sid , run))
12: broadcast (KE, NPK[my],Sign(sk , (NPK[my], sidHpre)))
13: receive (KE, NPK[p], σ[p]) from all p ∈ P
14: where NIKE.ValidatePK(NPK[p])

∧ Verify(VK[p], σ[p], (NPK[p], sidHpre))
15: missing Poff do
16: P ··= P \ Poff . Exclude offline peers
17: sidH ··= H((sidH, sid , P ∪ {my}, NPK[ ], run))
18: K[ ] ··= DC-KEYS(P, NPK[ ],my, NSK[my], sidH))

19: . Generate fresh message to mix
20: m ··= GEN()
21: DC[my][ ] ··= DC-MIX(P,my, K[ ],m)

22: Pex ··= ∅ . Malicious (or offline) peers for later exclusion
23: . Commit to DC-net vector
24: COM[my] ··= H((CM, DC[my][ ]))
25: broadcast (CM, COM[my],Sign(sk , (COM[my], sidH)))
26: receive (CM, COM[p], σ[p]) from all p ∈ P
27: where Verify(VK[p], σ[p], (COM[p], sidH))
28: missing Poff do . Store offline peers for exclusion
29: Pex ··= Pex ∪ Poff

30: if run > 0 then
31: . Wait for prev. run to notify us of malicious peers
32: PexPrev ··= wait
33: Pex ··= Pex ∪ PexPrev

34: . Collect shared keys with excluded peers
35: for all p ∈ Pex do
36: Kex[my][p] ··= K[p]
37: . Start next run (in case this one fails)
38: P ··= P \ Pex

39: next ··= fork RUN(P,my, VK[ ], sk , sid , run + 1)

40: . Open commitments and keys with excluded peers
41: broadcast (DC, DC[my][ ], Kex[my][ ],Sign(sk , Kex[my][ ]))
42: receive (DC, DC[p][ ], Kex[p][ ], σ[p]) from all p ∈ P
43: where H((CM, DC[p][ ])) = COM[p]

∧ {p′ : Kex[p][p
′] 6= ⊥} = Pex

∧ Verify(VK[p], Kex[p][ ], σ[p])
44: missing Poff do . Abort and rely on next run
45: return RESULT-OF-NEXT-RUN(Poff, next)
46: M ··= DC-MIX-RES(P ∪ {my}, DC[ ][ ], Pex, Kex[ ][ ])

47: . Check if our output is contained in the result
48: if m ∈M then
49: Pmal ··= CONFIRM(i, P,M,my, VK[ ], sk, sid)
50: if Pmal = ∅ then . Success?
51: abort next
52: return m
53: else
54: broadcast (SK, NSK[my]) . Reveal secret key

55: receive (SK, NSK[p]) from all p ∈ P
56: where NIKE.ValidateKeyPair(NPK[p], NSK[p])
57: missing Poff do . Abort and rely on next run
58: return RESULT-OF-NEXT-RUN(Poff, next)
59: . Determine malicious peers using the secret keys
60: Pmal ··= BLAME(P, NPK[ ],my, NSK[ ], DC[ ][ ], sidH

, Pex, Kex[ ][ ])
61: return RESULT-OF-NEXT-RUN(Pmal, next)

62: proc DC-MIX(P,my, K[ ],m)
63: . Create power sums in individual slots
64: for i ··= 1, . . . , |P |+ 1 do
65: DCMY[j] ··= mi + DC-SLOT-PAD(P,my, K[ ], i)
66: return DCMY[ ]

67: proc DC-MIX-RES(Pall, DCMIX[ ][ ], Pex, Kex[ ][ ])
68: for s ··= 1, . . . , |Pall| do
69: M∗[s] ··=DC-SLOT-OPEN(Pall,DCMIX[ ][ ],s, Pex,Kex[ ][ ])
70: . Solve equation system for array M[ ] of messages
71: M[ ] ··= Solve(∀s ∈ {1, . . . , |Pall|}. M∗[s] =

∑|Pall|
i=1 M[i]s)

72: return Set(M[ ]) . Convert M[ ] to an (unordered) multiset

73: proc DC-SLOT-PAD(P,my, K[ ], s)
74: return

∑
p∈P sgn(my− p) · G((K[p], s)) . in F

75: proc DC-SLOT-OPEN(Pall, DC[ ][ ], s, Pex, Kex[ ][ ])
76: . Pads cancel out for honest peers
77: m∗ ··=

∑
p∈Pall

DC[p][s] . in F
78: . Remove pads for excluded peers
79: m∗ ··= m∗ −

∑
p∈Pall

DC-SLOT-PAD(Pex, p, Kex[ ], s)
80: return m∗

81: proc DC-KEYS(P, NPK[ ],my, nsk, sidH)
82: for all p ∈ P do
83: K[p] ··= NIKE.SharedKey(my, p, nsk, NPK[p], sidH)
84: return K[ ]

85: proc BLAME(P, NPK[ ],my, NSK[ ], DC[ ][ ], sidH, Pex, Kex[ ][ ])
86: Pmal ··= ∅
87: for all p ∈ P do
88: P ′ ··= (P ∪ {my} ∪ Pex) \ {p}
89: K′[ ] ··= DC-KEYS(P ′, NPK[ ], p, NSK[p], sidH)

90: . Reconstruct purported message m′ of p
91: m′ ··= DC[p][1]− DC-SLOT-PAD(P ′, p, K′[ ], 1)

92: . Replay DC-net messages of p
93: DC′[ ] ··= DC-MIX(P ′, p, K′[ ],m′)
94: if DC′[ ] 6= DC[p][ ] then . Exclude inconsistent p
95: Pmal ··= Pmal ∪ {p}
96: . Verify that p has published correct symmetric keys
97: for all pex ∈ Pex do
98: if Kex[p][pex] 6= K′[pex] then
99: Pmal ··= Pmal ∪ {p}
100: return Pmal

101: proc RESULT-OF-NEXT-RUN(PexNext, next)
102: . Hand over to next run and notify of peers to exclude
103: notify next of PexNext

104: . Return result of next run
105: result ··= join next
106: return result
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As the message H((CM, DC[my][ ])) implements a hiding,
binding and non-malleable commitment on DC[my][ ] (recall
that adding randomness is not necessary because there is
sufficient entropy in DC[my][ ]), it is infeasible, even for a
rushing malicious peer a, to have committed to an ill-formed
vector that leaves mp intact. This is a contradiction, and thus
the condition m ∈ M evaluates equivalently for all honest
peers.

Now observe that the condition m ∈M determines whether
CONFIRM() is called. That is, whenever CONFIRM(i, P,M) is
called by some honest peer p, then mp′ ∈ M for all honest
peers p′. This shows part (i) of validity.

For part (ii) (|M | ≤ |P |) observe that in the beginning of
an execution and whenever P changes, a new run with |P |
peers is started, each of which submits exactly one message.
Thus |M | = |P |. This shows validity.

3) Agreement: To show agreement, we have to show that
for each run i, if one honest peer p calls CONFIRM(i, P,M) in
some round, then every honest peer p′ calls CONFIRM(i, P,M)
in the same round. This follows from validity: By part
(i) of validity, we know that if some honest peer calls
CONFIRM(i, P,M), then mp′ ∈ M for every peer p′ in
run i. By construction of the protocol (Line 48), the con-
dition mp′ ∈ M is exactly what determines whether p′

calls CONFIRM(i, P,M). Thus every honest peer p′ calls
CONFIRM(i, P,M) in the same round, which shows agreement.

4) Termination: Now, we show why the protocol terminates
for every honest peer. We first show that at least one malicious
peer is excluded in each failed run. We have already argued
above (for validity) that in the presence of an honest bulletin
board, all honest peers take the same control flow decision
(whether to call CONFIRM() or not at the end of each run). We
can thus distinguish cases on this control flow decision.

If CONFIRM() is called in a failed run, then it returns
the same non-empty set of malicious peers (by the “correct
exclusion” property), and those peers will be excluded by
every honest peer. If CONFIRM() is not called in a run, then
there must have been disruption by at least one malicious
peer. Replaying all protocol messages of this run (with the
help of then-revealed secret keys) clearly identifies at least
one malicious peer, and since all honest peers run the same
deterministic code (BLAME()) on the same inputs to do so,
they will all exclude the same set of malicious peers.

We have shown that in each failed run, all honest peers
exclude the same non-empty set of malicious peers. Eventually,
we reach one of two cases. In the first case, the number of
unexcluded peers will drop below two; in that case the protocol
is allowed to fail and thus there is nothing to show. In the
second case, we reach a run in which all peers behave honestly
(independently of whether they are controlled by the attacker).
This run will successfully terminate, which shows termination.

E. Variants of the Protocol

The design of DiceMix follows the P2P paradigm, and
consequently, we do not expect the bulletin board to implement
any real functionality or perform any computation. The bulletin
board is a simple broadcast mechanism and may be replaced

Runs Communication rounds
1 KE DC SK

2 KE DC CF

3 KE DC CF

4 KE

Fig. 3: Example of a DiceMix Execution with a Dedicated
Bulletin Board. Run 1 fails due to DC-net disruption. Run
2 fails to confirm. Run 3 finally succeeds and run 4 is then
aborted. Rows represent protocol runs and columns represent
communication rounds. The blue arrows depict dependencies
between runs, i.e., some run informs the next run about the
peers to exclude. KE: Key exchange; CM: Commitment; DC:
DC-net; SK: Reveal secret key; CF: Confirmation.

by a suitable reliable broadcast protocol [55]. However, if one
is willing to depend on a more sophisticated bulletin board
with dedicated functionality, the efficiency of DiceMix can be
improved. It is important to note that even a dedicated bulletin
board is still only trusted for termination and not for anonymity.

1) Dropping the Commitment Phase: Recall that the purpose
of the non-malleable commitments is to prevent malicious peers
from choosing their DC-net vectors depending on the DC-net
vectors of the honest peers.

Assume that the bulletin board supports secure channels,
and broadcasts the messages in the DC round only after all
peers have submitted their messages. Then independence is
ensured with an honest bulletin board, and we can drop the CM
(commitment) round. This is secure because the independence
of the DC-net vectors is necessary for termination but not
for anonymity, and we trust the bulletin board for termination
already. A serial protocol execution (without concurrency) will
then follow the pattern “KE (DC CF/SK)+”, where the plus
indicates that these phases are performed once or several times.
With the help of concurrency, we can run the key exchange (KE)
concurrently to the confirmation phase (CF/SK), and reduce the
number of rounds to 3 + 2f (assuming that the confirmation
phase takes one round). An example run is depicted in Fig. 3.

Note that a revelation of symmetric keys (RV in the original
protocol) will not be necessary anymore, because the malicious
peers to exclude are determined before the DC round of the
second run (see Section IV-C2 for an explanation of RV).

2) Bulletin Board Performs Expensive Computation: More-
over, a dedicated bulletin board can perform the expensive
computation of solving the equation system involving the power
sums, and broadcast the result instead of the DC-net vectors.
The bulletin board would then also be responsible for handling
inconsistent messages in the SK run; it would then announce
the malicious peers after having received all secret keys. This
saves communication in the rounds DC and SK. Again, security
is preserved, because we trust the bulletin board for termination.

V. PERFORMANCE ANALYSIS

In this section, we analyze the performance of DiceMix.
We first analyze the communication costs, and then evaluate
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the running time with the help of a prototype implementation.
Our results show that DiceMix is practical and outperforms
existing solutions.

A. Communication

Using concurrent runs, DiceMix needs (c+ 3) + (c+ 1)f
communication rounds, where f is the number of peers actually
disrupting the protocol execution, and c is the number of rounds
of the confirmation subprotocol. In the case c = 1, such as in
our Bitcoin mixing protocol (Section VI), DiceMix needs just
4 + 2f rounds.

The communication costs per run and per peer are domi-
nated by the broadcast of the DC-net array DC[my][ ] of size
n · |m| bits, where n is the number of peers and |m| is the
length of a mixed message. All three other broadcasts have
constant size at any given security level. These communication
costs have been shown to be asymptotically optimal for P2P
mixing [21].

B. Prototype Implementation

We developed a proof-of-concept implementation of the
DiceMix protocol. Our unoptimized implementation encom-
passes the complete functionality to enable testing a successful
run of DiceMix without disruptions.

The implementation is written in Python and uses OpenSSL
for ECDSA signatures on the secp256k1 elliptic curve (as
used in Bitcoin) at a security level of 128 bits. We use a Python
wrapper for the PARI/GP library [48], [57] to find the roots of
the power sum polynomial by the Kaltofen-Shoup algorithm
for polynomial factorization [38].

1) Testbed: We tested our DiceMix implementation in
Emulab [60]. Emulab is a testbed for distributed systems
that enables a controlled environment with easily configurable
parameters such as network topology or bandwidth of the
communication links. We simulated a network setting in which
all peers (10 Mbit/s) have pre-established TCP connections to
a bulletin board (1 Gbit/s); all links had a delay of 50 ms. We
used different Emulab machines (2.2–3.0 GHz) to simulate the
peers; note that the slowest machine is the bottleneck due to
the synchronization enforced by the broadcasts.
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Fig. 4: Wall-clock time and computation times. All peers
have a bandwidth of 10 Mbit/s; the bulletin board has a total
of 1 Gbit/s; all links have 50 ms latency.

We ran the protocol with a varying number of peers, ranging
from 20 to 100. Each peer had as input for the mixing a 160-bit
message (e.g., a Bitcoin address).

2) Results: First, we measured wall-clock time, averaged
over all peers. As shown in Fig. 4, we observe that with
a moderate size of 50 participants, DiceMix runs in about 8
seconds. Second, we measured computation time; the results are
depicted in Fig. 4. We considered the average total computation
time spent by a peer and average computation time only for
polynomial factorization, i.e., solving the equation system
involving the power sums.

3) Optimization: We observe that solving the equation
system is quite expensive, e.g., about one second for 100 peers.
To demonstrate that this is mostly due to lack of optimization,
we developed an optimized stand-alone application for this
step in C++ using the FLINT number theory library [35],
which provides a highly optimized implementation of the
Kaltofen-Shoup algorithm for polynomial factorization over
finite fields [38]. Our optimized application solves the equation
system involving the power sums in about 0.32 seconds for 100
peers on a 2.70 GHz (Intel Core i7-4800MQ) machine, using
6 MB of DDR3-1600 RAM. This shows that optimizations can
reduce the running time of the protocol further.

4) Conclusion: The experimental results show that even
our unoptimized implementation of DiceMix scales to a
large number of peers and outperforms state-of-the-art P2P
mixing solutions such as CoinShuffle [53] and Dissent [23]
considerably. In comparison, CoinShuffle (as an tailored variant
of the Dissent shuffle protocol) needs slightly less than three
minutes to complete a successful run of the P2P mixing protocol
in a very similar test environment with 50 peers.

VI. EFFICIENT COIN MIXING IN BITCOIN

Several different heuristics to link Bitcoin payments sent
or received by a particular user have been proposed in the
literature [5], [6], [41], [47], [52], [54]. Ultimately, crypto-
currencies such as Bitcoin using a public blockchain may in
fact provide less anonymity than traditional banking, as the
deployment of proposed heuristics to the blockchain opens
the possibility to know who paid what to whom. Coin mixing
has emerged as a technique to overcome this problem while
maintaining full compatibility with the current Bitcoin protocol.

A promising solution in this direction is CoinShuffle [53],
a P2P mixing protocol based on a mixnet run by the peers
to ensure the unlinkability of input and output accounts in
a jointly created mixing transaction (a so-called CoinJoin
transaction [44]). However, a run with a decent anonymity
set of n = 50 peers takes about three minutes to complete [53],
assuming that every peer is honest. In the presence of f
disruptive peers aiming at impeding the protocol, O(nf)
communication rounds are required, most of them inevitably
taking longer due to the disruptive peers delaying their messages
intentionally. For instance, assume that there are f = 10
disrupting peers; then the protocol needs more than 30 minutes
to succeed, which arguably prohibits a practical deployment of
CoinShuffle. As a consequence, we lack a coin mixing protocol
for crypto-currencies that is efficient enough for practical
deployment.
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As a solution, we propose CoinShuffle++, a highly efficient
coin mixing protocol resulting from the application of DiceMix
to the Bitcoin setting.

A. The Bitcoin System

Bitcoin [2], [13], [50] is a crypto-currency run by a P2P
network. An account in the Bitcoin system is associated with an
ECDSA key pair; accounts are publicly identified by a 160-bit
hash of the verification key, called an address. Every peer can
create new accounts by creating fresh key pairs.

A peer can spend funds associated with her account
by creating Bitcoin transactions, which associate funds with
another account. In its simplest form, a Bitcoin transaction is
composed of a transaction input (a reference to unspent funds in
the blockchain associated with some account), a newly created
transaction output, and the amount of funds to be transferred
from the input to the output. For a transaction to be fully valid,
it must be signed with the signing key of the input account.

Bitcoin transactions can include multiple input and output
accounts to spend funds simultaneously. In this case, the
transaction must be signed with the all signing keys of the
input accounts.

B. Security Goals

Apart from the security goals for a P2P mixing protocol
(see Section II-E), a coin mixing protocol must guarantee
correct balance. It ensures that no funds can be stolen from
honest peers.

Correct Balance: For every honest peer p, the total balance
of all accounts of peer p is not reduced by running the coin
mixing protocol (ignoring transaction fees).

C. The CoinShuffle++ Protocol

CoinShuffle++ leverages DiceMix to perform a Bitcoin
transaction where the input and output accounts for any given
honest peer cannot be linked. In particular, CoinShuffle++
creates a fresh pair of signing-verification Bitcoin keys and
returns the verification key to implement GEN().

Then, for the confirmation subprotocol CONFIRM(), Coin-
Shuffle++ uses CoinJoin [44], [46] to perform the actual mixing.
A CoinJoin transaction allows a set of peers to mix their coins
without the help of a third party. In such a transaction, peers
set their current Bitcoin accounts as input and a mixed list of
fresh Bitcoin accounts as output. Crucially, peers can verify
whether the transaction thereby constructed transfers the correct
amount of funds to their fresh output account. Only if all peers
agree and sign the transaction, it becomes valid. So in the
case of CoinShuffle++, the explicit confirmation provided by
DiceMix is a list of valid signatures, one from each peer, on
the CoinJoin transaction.

Note that DiceMix guarantees that everybody receives the
correct list of output accounts in the confirmation subprotocol.
So a peer refusing to sign the CoinJoin transaction can safely be
considered malicious and removed. This is a crucial property for
an anonymous CoinJoin-based approach; otherwise, a single
malicious peer can refuse to sign the transaction and thus

mount a DoS attacl on all other peers who cannot exclude the
malicious peer if not convinced of his guilt.

We define CoinShuffle++ in Algorithm 2. There, we denote
by CoinJoinTx(VKin[ ],VKout, β) a CoinJoin transaction that
transfers β bitcoins from every input account in VKin[ ] to the
output accounts, where β is a pre-arranged parameter; note that
if there are |P | unexcluded peers, then the P2P mixing protocol
guarantees that there will be |M | ≤ |P | output accounts.
Moreover, we denote by Submit(tx, σ[ ]) the submission of
tx including all signatures to the Bitcoin network.

1) Security Analysis: CoinShuffle++ adheres to the require-
ments specified in Section IV-B. Thus, sender anonymity and
termination in CoinShuffle++ are immediate. (We refer the
reader to [46] for a detailed taint-based analysis on the privacy
implications of CoinJoin-based coin mixing protocols.) Correct
balance is enforced by the CoinJoin paradigm: by construction,
a peer signs only transactions that will transfer her funds from
her input address to her output address.

2) Performance Analysis: In our performance analysis of
DiceMix (Section V), GEN() creates a new ECDSA key pair
and CONFIRM() obtains ECDSA signatures from all peers
(using their initial ECDSA key pairs) on a bitstring of 160
bits. This is almost exactly CoinShuffle++, so the performance
analyses of DiceMix carries over to CoinShuffle++.

3) Practical Considerations: There are several considera-
tions when deploying CoinShuffle++ in practice. First, Bitcoin
charges a small fee to prevent transaction flooding attacks.
Second, the mixing amount β must be the same for all peers,
but peers typically do not hold the exact mixing amount in their
input Bitcoin account and thus may need a change address.
Finally, after honestly performing the CoinShuffle++ protocol,
a peer could spend her bitcoins in the input account before
the CoinJoin transaction is confirmed, in a double-spending
attempt. All these challenges are easy to overcome. We refer
the reader to the literature on CoinJoin-based coin mixing, e.g.,
[44], [46], [53], for details.

DiceMix does not rely on any external anonymous channel
(e.g., Tor network [24]) for mixing coins. Nevertheless, to
ensure unlinkability of inputs of the CoinJoin transaction with
network-level details such as IP addresses, using an external
anonymous channel is highly recommended both for running
DiceMix and actually spending the mixed funds later.

Algorithm 2 CoinShuffle++
proc GEN( )

(vk , sk) ··= AccountGen() . Stores sk in the wallet
return vk

proc CONFIRM(i, P,VKout,my, VKin[ ], sk in, sid )
tx ··= CoinJoinTx(VKin[ ],VKout, β)
σ[my] ··= Sign(sk in, tx)
broadcast σ[my]
receive σ[p] from all p ∈ P

where Verify(VKin[p], σ[p], tx)
missing Poff do . Peers refusing to sign are malicious

return Poff

Submit(tx, σ[ ])
return ∅ . Success!
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4) Compatibility and Extensibility: Since CoinJoin trans-
actions work in the current Bitcoin network, CoinShuffle++
is immediately deployable without any change to the system.
Moreover, the fact that DiceMix is generic in the CONFIRM()
function makes it possible to define variants of CoinShuffle++
to support a wide range of crypto-currencies and signature
algorithms, including interactive signature protocols.

For example, the integration of Schnorr signatures is planned
in an upcoming Bitcoin software release [11]. This modification
will enable aggregate signatures using an interactive two-round
protocol among the peers in a CoinJoin transaction [45]. The
first round of this two-round protocol does not depend on the
details of the transactions and can be run in parallel to the
third round (DC) of CoinShuffle++; this keeps the number of
required communication rounds at 4f + 2.

Given that signatures are often the largest individual part
of the transactions, aggregate signatures greatly reduce the size
of transactions and thus the transaction fee, thereby making
mixing using CoinJoin transactions even cheaper.

5) Resistance against DoS Attacks by Sybils: CoinShuffle++
makes sure that disruptive peers in a mixing will be excluded in
due course. To avoid that the same peers cannot disrupt further
protocol runs either, the bootstrapping mechanism (if executed
on the bulletin board) can block the unspent transaction outputs
in the blockchain used by the disruptive peers for a predefined
period of time, e.g., an hour. (They should not blocked forever
because peers could be unresponsive for legitimate reasons,
e.g., unreliable connectivity.)

This ensures that the number of unspent transactions
outputs belonging to the attacker limits his ability to disrupt
CoinShuffle++ on a particular bulletin board. The attacker can
try to overcome the blocking by spending the corresponding
funds to create new unspent transaction outputs (child outputs
of the blocked outputs); however, this is expensive because he
needs to pay transactions fees. Moreover, the bootstrapping
mechanism can block not only the used transaction outputs but
also their child outputs.

VII. RELATED WORK IN CRYPTO-CURRENCIES

We give an overview of the literature on privacy-preserving
protocols for crypto-currencies. Related work for P2P mixing
protocols is discussed throughout the paper.

A. Tumblers

A tumbler provides a backwards-compatible centralized
mixing service [12] to unlink users from their funds: several
users transfer their funds to the tumbler, which returns them to
the users at fresh addresses. The main advantage of a centralized
approach is that it scales well to large anonymity sets, because
the anonymity set is the set of all users using the service in
some predefined time window. However, by using these services
naively, a user must fully trust the tumbler: First, anonymity is
restricted towards external observers, i.e., the mixing service
itself can still determine the owner of the funds. Second and
more important, the users have to transfer their funds to the
tumbler, which could just steal them by refusing to return them.

1) Accountable Tumblers: Mixcoin [14] mitigates the sec-
ond problem by holding the tumbler accountable if it steals
the funds, but theft is still possible. Blindcoin [58] improves
upon Mixcoin in that the tumbler additionally cannot break
anonymity.

2) Blindly Signed Contracts and TumbleBit: Blindly Signed
Contracts [37] and its successor TumbleBit [36] propose an
untrusted tumbler based on the combination of blind signatures
and smart contracts to solve both aforementioned challenges,
i.e., theft and anonymity. To perform ordinary mixing this
approach requires at least two transactions to be confirmed
sequentially (in two different blocks), whereas CoinShuffle++
requires just one transaction.

TumbleBit supports using the second transaction to send
a payment to a recipient directly, which is then on par with
CoinShuffle++, which also requires one transaction for mixing
and one transaction for sending a payment to a recipient.
However, this mode of TumbleBit comes with limitations.
First, it requires coordination between the tumbler and the
recipient. Second, it requires more fees than CoinShuffle++,
because the CoinJoin transaction used in CoinShuffle++ is
cheap, in particular if using aggregate signatures. Third, it
requires the payment amount to be exactly the mixing amount,
which hinders availability severely, because it is very difficult
to find enough users that are willing to send the exact same
amount of funds at a similar time. With CoinShuffle++, instead,
the second transaction, i.e., the actual spending transaction is
a normal transaction and supports change addresses, at which
peers get their remaining funds back.

B. Other P2P Mixing Approaches

In CoinParty [63], a set of mixing peers is used to mix funds
of users. It is assumed that 1/3 of the mixing parties are honest.
This trust assumption is not in line with the philosophy of
Bitcoin, which works in a P2P setting without strong identities,
where Sybil attacks are easily possible.

CoinShuffle++, instead, does not make any trust assumption
on the mixing participants, except that there must be two honest
peers, which is a fundamental requirement for any protocol
providing anonymity.

Xim [9] improves on its related previous work [6] in that
it uses a fee-based advertisement mechanism to pair partners
for mixing, and provides evidence of the agreement that can
be leveraged if a party aborts. Even in the simple case of a
mixing between two peers, Xim requires publishing several
Bitcoin transactions in the Bitcoin blockchain, which takes on
average at least ten minutes for each transaction.

In contrast, CoinShuffle++ requires to submit a single
transaction to the Bitcoin blockchain independently on the
number of peers.

C. Privacy-preserving Crypto-currencies

Bitcoin is by far the most widespread crypto-currency and
will most probably retain this status in the foreseeable future,
so users are in need of solutions enhancing privacy in Bitcoin.
Nevertheless, several promising designs of crypto-currencies
with built-in privacy features are available.
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1) Zerocoin and Zerocash: Zerocoin [49] and its follow-
up work Zerocash [7], whose implementation Zcash has been
deployed recently [4], are crypto-currency protocols that provide
anonymity by design. Although these solutions provide strong
privacy guarantees, it is not clear whether Zcash will see
widespread adoption, in particular given its reliance on a trusted
setup due to the use of zkSNARKS.

2) CryptoNote: The CryptoNote design [59] relies on ring
signatures to provide anonymity for the sender of a transaction.
In contrast to CoinShuffle++, an online mixing protocol is not
necessary and a sufficient anonymity set can be created using
funds of users currently not online. However, this comes with
two important drawbacks for scalability.

First, CryptoNote requires each transaction to contain a ring
signature of size O(n), where n is the size of the anonymity set,
whereas our approach based on CoinJoin needs only constant
space per user. Storing the ring signatures requires a lot of
precious space in the blockchain, and verifying them puts a
large burden on all nodes in the currency network. (In other
words, the advantage of CoinShuffle++ is that it moves the
anonymization work to an online mixing protocol, which is
independent of the blockchain.)

Second, CryptoNote is not compatible with pruning, a
feature supported by the Bitcoin Core client [10]. Pruning
reduces the storage requirements of nodes drastically by deleting
spent transactions from local storage once verified. This is
impossible in CryptoNote because it is not entirely clear whether
funds in the blockchain have been spent or not. A CoinJoin-
based approach such as CoinShuffle++ does not suffer from
this problem and is compatible with pruning.

VIII. A DEANONYMIZATION ATTACK ON
STATE-OF-THE-ART P2P MIXING PROTOCOLS

In this section, we show a deanonymization attack on state-
of-the-art P2P mixing protocols.

At the core of the problem is handling of peers that appear
to be offline. They cannot be handled like active disruptors:
While sacrificing the anonymity of some peer p is not at all
a problem if peer p is proven to be an active disruptor and
thus malicious, sacrificing the anonymity of p is a serious issue
and can renders a protocol insecure if p goes offline. Peer p
could in fact be honest, because there is no “smoking gun” that
allows the other peers to conclude that p is malicious.

Our attack is based on the well-known and very basic obser-
vation that an offline peer cannot possibly have sent a message,
which comes in many shapes in basically every anonymous
communication protocol with reasonable latency [15], [62].
While the attack relies on this very basic observation, it has
been overlooked in the literature that a hard requirement to
terminate successfully in the presence of offline peers makes
existing P2P mixing protocols vulnerable.

p

BB

M′ M

Fig. 5: A P2P Mixing Protocol under Attack. Peer p is
partitioned from the bulletin board BB . The dashed rectangles
indicate the message sets M and M ′ of the peers in the
respective rectangle.

A. Example: A Deanonymization Attack on Dissent

We illustrate the attack on the Dissent shuffle protocol [23],
[56].5 In the last communication round of the Dissent shuffle
protocol, every peer publishes a decryption key. All decryption
keys taken together enable the peers to decrypt anonymized
ciphertexts, resulting in the final set M of anonymized messages.
(The rest of the protocol is not relevant for our attack.) The
attack on the shuffle protocol now proceeds as follows (Fig. 5):

1) The network attacker does not interfere with the protocol
until the last communication round. In the last round,
the attacker partitions the network into a part with
only one honest peer p and a part with the remaining
peers. Consequently, the last protocol message by peer
p (containing her decryption key) does not reach the
other peers. As the attacker has learned all decryption
keys (including that of p), he can decrypt the final set of
messages M , but nobody else can.6 However, anonymity
is not broken so far.

2) The remaining peers must eventually conclude that peer
p is offline and exclude her; otherwise they will not
be able to continue the protocol, because they cannot
assume that p will ever be reachable again. The strategy
by which Dissent provides termination in such a situation
is through a wrapper protocol that instructs the remaining
peers to attempt a second run of Dissent without peer
p. In this second run, the remaining peers resubmit their
input messages used in the first run [23, Section 5.4]. The
attacker does not interfere with this second run, and so the
run will succeed with a final set M ′ of mixed messages.

3) Observe that M ′ \M = {mp}, since p is the only peer
present in the first run but not in the second. This breaks
anonymity of p.

The issue on the formal side is an arguably too weak security
definition. The core of the Dissent protocol [23], [56] does not

5There are several protocols named Dissent. First, there is a P2P mixing
protocol proposed by Corrigan-Gibbs and Ford [23] and formally proven secure
by Syta et. al. [56]. Second, there is protocol [61] in a client/server setting,
which requires trust in one of several servers and is consequently not relevant
in our context. The former (P2P) protocol by Corrigan-Gibbs and Ford [23]
has two variants, a shuffle protocol and a bulk protocol. The shuffle protocol is
supposed to provide anonymity but is restricted to all peers having a message
of the same size, whereas the bulk protocol does not share this restriction.
When we say Dissent, we always mean the shuffle protocol [23, Section 3].

6Dissent has the property that a passive network observer (not participating
in the protocol) can also reconstruct M .
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provide termination on its own but just a form of accountability,
which states that at least one active disruptor can be exposed
in every failed run of the protocol. The underlying idea is to
use the wrapper protocol to ensure termination by starting a
new run of Dissent without the exposed disruptor whenever a
run has failed.

The formal analysis of the Dissent, however, does not cover
the wrapper protocol. It considers only a single run of Dissent,
and correctly establishes anonymity and accountability for a
single run. It has been overlooked that anonymity is lost under
sequential composition of several runs of Dissent using the
same input messages, as prescribed in the wrapper protocol.

While Corrigan-Gibbs and Ford [23] acknowledge and
mention the problem that the last protocol message may be
withheld and thus some peer (or the network attacker) may
learn the result of the protocol while denying it to others [23,
Section 5.5], their discussion is restricted to reliability and fails
to identify the consequences for anonymity.

B. Generalizing the Attack

The underlying reason for this intersection-like attack is a
fairness issue: the attacker, possibly controlling some malicious
peers, can learn (parts of) the final message set M of a protocol
run while denying M to the other peers. If now some peer p
appears to be offline, e.g., because the attacker blocks network
messages, the remaining peers must finish the protocol without
p with a message set M ′, which unlike M does not contain
mp. Thus the attacker has learned that mp belongs to p.

Since fairness is a general problem in cryptography without
an honest majority, it is not surprising that the attack can be gen-
eralized. Next we show a generic attack that breaks anonymity
for every P2P mixing protocol that provides termination and
supports arbitrarily chosen input messages.

Attack Description: We assume an execution of a P2P
mixing protocol with peer set P = {p1, . . . , pn} and their set of
fixed input messages M = {m1, . . . ,mn}. We further assume
that the attacker controls the network and a majority A ⊂ P
of peers in the execution such that |P |/2 < |A| ≤ |P | − 3.

For the sake of presentation, we assume that no two peers
send a protocol message in the same communication round.
(This models that the network attacker can determine the order
of simultaneous messages arbitrarily.)

For some i, let r be the first communication round after
which input message mi of peer pi is known to a collusion of a
minority S of peers with pi /∈ S.7 Such a round exists, because
every peer outputs M at the end of a successful protocol
execution, and M contains mi. Note that knowledge of mi

does not imply that the collusion S of peers collectively knows
that mi belongs to peer pi; it just means that the collusion
knows that the bitstring mi is one of the peers’ input messages.

Assume that S ⊂ A, i.e., S is entirely controlled by the
attacker. The attacker lets the first r − 1 protocol rounds run
normally. In round r, he collects the protocol message and

7This is the first round r for which an efficient extraction algorithm E exists
such that E outputs mi with non-negligible probability, given the full state of
all peers in S after round r.

learns mi (by control of S). Then the attacker selects an index i∗
from the set of honest peers. Starting with round r, the attacker
only delivers protocol messages not from pi∗ and not from his
own peers in A; all these peers appear offline for the remaining
peers in R ··= P \ ({pi∗} ∪A). By assumption, |R| ≥ 2, and
hence by the termination property, those remaining peers in R
will finish the protocol with a public result set M ′ (M .

We distinguish cases. If i∗ = i, then pi /∈ R. Since
additionally R is a minority, which has not seen any protocol
messages from pi after round r − 1, the peers in R do not
know mi, and thus mi /∈ M ′. If instead i∗ 6= i, then pi ∈ R,
and the correctness of the protocol implies mi ∈M ′.

In other words, the attacker learns whether mi belongs to
peer pi∗ or not by checking whether mi /∈ M ′. This breaks
the anonymity of pi∗ .

C. How DiceMix Avoids the Attack

To avoid the intersection of message sets, DiceMix draws
fresh messages in each run. Also, whenever some honest peer
p excludes an unreachable honest peer p′ (and sacrifices the
anonymity of p′), the correct confirmation property will ensure
that the current run will not terminate successfully for peer
p′, because p′ and p will have different views on the current
set P of unexcluded peers. Thus no anonymity is required for
the current run and malicious and offline peers can be handled
equally (as done throughout the previous sections).

IX. CONCLUSIONS

In this work we present DiceMix, a P2P mixing protocol
based on DC-nets that enables participants to anonymously
publish a set of messages ensuring sender anonymity and
termination. DiceMix avoids slot reservation and still ensures
that no collisions occur, not even with a small probability.
This results in DiceMix requiring only 4 + 2f communication
rounds in the presence of f misbehaving peers. We implemented
DiceMix and showed its practicality even for a large number
of 50 to 100 peers.

We use DiceMix to design CoinShuffle++, a practical
decentralized coin mixing protocol for Bitcoin. Our evaluation
results show that CoinShuffle++ is a promising approach to
ensure unlinkability of Bitcoin transaction while requiring no
change to the current Bitcoin protocol.

ACKNOWLEDGMENTS

We thank Bryan Ford for insightful discussions, and the
anonymous reviewers for their helpful comments. We also
thank Henry Corrigan-Gibbs and Dan Boneh for sharing the
manuscript of [21]. This work was supported by the German
Ministry for Education and Research (BMBF) through funding
for the German Universities Excellence Initiative.

REFERENCES

[1] “AN.ON (anonymity.online),” https://anon.inf.tu-dresden.de/.
[2] “Bitcoin Developer Guide,” https://bitcoin.org/en/developer-guide.
[3] “NXT 1.7 release,” http://www.nxtinfo.org/2015/11/30/nxts-upcoming-

1-7-release-featuring-coin-shuffling-singleton-assets-account-control-
and-an-improved-forging-algorithm/.

14

https://anon.inf.tu-dresden.de/
https://bitcoin.org/en/developer-guide
http://www.nxtinfo.org/2015/11/30/nxts-upcoming-1-7-release-featuring-coin-shuffling-singleton-assets-account-control-and-an-improved-forging-algorithm/
http://www.nxtinfo.org/2015/11/30/nxts-upcoming-1-7-release-featuring-coin-shuffling-singleton-assets-account-control-and-an-improved-forging-algorithm/
http://www.nxtinfo.org/2015/11/30/nxts-upcoming-1-7-release-featuring-coin-shuffling-singleton-assets-account-control-and-an-improved-forging-algorithm/


[4] “Zcash,” https://z.cash/.

[5] E. Androulaki, G. O. Karame, M. Roeschlin, T. Scherer, and S. Capkun,
“Evaluating user privacy in bitcoin,” in FC’13.

[6] S. Barber, X. Boyen, E. Shi, and E. Uzun, “Bitter to better. how to
make Bitcoin a better currency,” in FC’12.

[7] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer,
and M. Virza, “Zerocash: Decentralized anonymous payments from
Bitcoin,” in S&P’14.

[8] O. Berthold, H. Federrath, and S. Köpsell, “Web mixes: A system for
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